CAREER: Categorical and Classical Symmetries in Commutative Algebra and Algebraic Geometry

职业:交换代数和代数几何中的分类和经典对称性

基本信息

  • 批准号:
    1849173
  • 负责人:
  • 金额:
    $ 52.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

An important theme in mathematics is to find finite descriptions for objects that a priori contain an infinite amount of information. For example, an infinite sequence of numbers might be compactly encoded as the values of a simple function. One such occurrence relevant to this project is the set of dimensions of a sequence of spaces. In many cases of interest, it may not be possible to directly compute these numbers, but one can instead analyze their rate of growth. An old theme in mathematics has been to understand such problems by finding some algebraic structure on the sequence. Recently, several groups of researchers have found new, exotic algebraic structures that apply to previously unexpected examples of such sequences in areas such as topology, combinatorics, and algebraic geometry. The time is right for a deeper study of these structures. This project will develop such a study through targeted applications to new classes of examples which have been selected for novelty, either in settings or technical details.The PI will pursue several projects that involve different kinds of categorical and classical symmetries in commutative algebra and algebraic geometry. The general theme of the research is to find and exploit hidden symmetries in a problem to gain new information about it. This information can take the form of a new structural property or a finiteness result about a family of invariants. This research will focus in particular on several classes of mathematical objects for which these properties or calculation of invariants have resisted more traditional means of attack. Among these are: the action of ordered injections on the homology of groups of upper-triangular matrices, the action of surjections on the cohomology of compactified moduli spaces, and Hopf ring actions on syzygies of secant varieties of varieties arising from multilinear algebra. These are three examples of variants of the recently well-studied "FI-modules," which offer new technical challenges and open the door to new paradigms of "representation stability."
数学中的一个重要主题是为先验包含无限信息的对象找到有限的描述。例如,一个无限序列的数字可能被压缩编码为一个简单函数的值。与这个项目相关的一个这样的事件是空间序列的维度集。在许多感兴趣的情况下,可能无法直接计算这些数字,但可以分析它们的增长率。数学中的一个古老主题是通过找到序列上的某种代数结构来理解这类问题。最近,几组研究人员发现了新的,奇异的代数结构,适用于以前意想不到的例子,如拓扑学,组合学和代数几何领域的序列。现在是对这些结构进行更深入研究的时候了。该项目将通过有针对性地应用于新的类别的例子来发展这样的研究,这些例子是在设置或技术细节上因新奇而被选择的。PI将从事几个涉及交换代数和代数几何中不同类型的范畴对称和经典对称的项目。该研究的主题是发现和利用问题中隐藏的对称性来获得关于问题的新信息,这些信息可以是一个新的结构性质,也可以是关于一族不变量的有限性结果。这项研究将特别关注几类数学对象,这些属性或不变量的计算已经抵抗了更传统的攻击手段。其中包括:行动有序注射的同源性组的上三角矩阵,行动的满射上同调的紧模空间,和霍普夫环行动syzygies割线品种品种的品种所产生的多线性代数。这是最近研究得很好的“FI-模块”的变体的三个例子,它们提供了新的技术挑战,并为“表征稳定性”的新范式打开了大门。"

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Noetherianity of some degree two twisted skew-commutative algebras
某种程度的二阶扭曲斜交换代数的无以太性
  • DOI:
    10.1007/s00029-019-0461-3
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nagpal, Rohit;Sam, Steven V.;Snowden, Andrew
  • 通讯作者:
    Snowden, Andrew
Bi-graded Koszul modules, K3 carpets, and Green's conjecture
双分级 Koszul 模、K3 地毯和格林猜想
  • DOI:
    10.1112/s0010437x21007703
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Raicu, Claudiu;Sam, Steven V
  • 通讯作者:
    Sam, Steven V
Regularity bounds for twisted commutative algebras
An equivariant Hilbert basis theorem
等变希尔伯特基定理
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Erman, Daniel;Sam, Steven V;Snowden, Andrew
  • 通讯作者:
    Snowden, Andrew
Small projective spaces and Stillman uniformity for sheaves
  • DOI:
    10.14231/ag-2021-010
  • 发表时间:
    2021-05-01
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Erman, Daniel;Sam, Steven, V;Snowden, Andrew
  • 通讯作者:
    Snowden, Andrew
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Sam其他文献

Steven Sam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Sam', 18)}}的其他基金

New perspectives in combinatorial algebra
组合代数的新视角
  • 批准号:
    2302149
  • 财政年份:
    2023
  • 资助金额:
    $ 52.97万
  • 项目类别:
    Continuing Grant
Interactions between Commutative Algebra and Representation Theory
交换代数与表示论之间的相互作用
  • 批准号:
    1848744
  • 财政年份:
    2018
  • 资助金额:
    $ 52.97万
  • 项目类别:
    Standard Grant
CAREER: Categorical and Classical Symmetries in Commutative Algebra and Algebraic Geometry
职业:交换代数和代数几何中的分类和经典对称性
  • 批准号:
    1651327
  • 财政年份:
    2017
  • 资助金额:
    $ 52.97万
  • 项目类别:
    Continuing Grant
Interactions between Commutative Algebra and Representation Theory
交换代数与表示论之间的相互作用
  • 批准号:
    1500069
  • 财政年份:
    2015
  • 资助金额:
    $ 52.97万
  • 项目类别:
    Standard Grant

相似海外基金

Studies in Categorical Algebra
分类代数研究
  • 批准号:
    2348833
  • 财政年份:
    2024
  • 资助金额:
    $ 52.97万
  • 项目类别:
    Continuing Grant
Enriched Categorical Logic
丰富的分类逻辑
  • 批准号:
    EP/X027139/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.97万
  • 项目类别:
    Fellowship
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
  • 批准号:
    2415067
  • 财政年份:
    2024
  • 资助金额:
    $ 52.97万
  • 项目类别:
    Continuing Grant
Categorical Invariants of Matroids
拟阵的分类不变量
  • 批准号:
    2344861
  • 财政年份:
    2024
  • 资助金额:
    $ 52.97万
  • 项目类别:
    Continuing Grant
Categorical centers, cactus actions, and diagram algebras
分类中心、仙人掌动作和图代数
  • 批准号:
    2302664
  • 财政年份:
    2023
  • 资助金额:
    $ 52.97万
  • 项目类别:
    Standard Grant
Categorical Symmetries of Operator Algebras
算子代数的分类对称性
  • 批准号:
    2247202
  • 财政年份:
    2023
  • 资助金额:
    $ 52.97万
  • 项目类别:
    Standard Grant
Categorical Duality and Semantics Across Mathematics, Informatics and Physics and their Applications to Categorical Machine Learning and Quantum Computing
数学、信息学和物理领域的分类对偶性和语义及其在分类机器学习和量子计算中的应用
  • 批准号:
    23K13008
  • 财政年份:
    2023
  • 资助金额:
    $ 52.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Categorical geometry and perfect group schemes
分类几何和完美群方案
  • 批准号:
    FT220100125
  • 财政年份:
    2023
  • 资助金额:
    $ 52.97万
  • 项目类别:
    ARC Future Fellowships
The Neural Mechanisms Underlying Categorical Decision Making
分类决策背后的神经机制
  • 批准号:
    10750000
  • 财政年份:
    2023
  • 资助金额:
    $ 52.97万
  • 项目类别:
Categorical and dimensional investigations of dynamic functional connectivity and behavior during response inhibition in children with and without ADHD
患有和不患有多动症的儿童在反应抑制过程中动态功能连接和行为的分类和维度研究
  • 批准号:
    10606133
  • 财政年份:
    2023
  • 资助金额:
    $ 52.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了