Recursive Partitioning Methods for Life History Processes
生命史过程的递归划分方法
基本信息
- 批准号:RGPIN-2016-04396
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The analysis of life history processes is an important aspect of statistical science with applications in a wide range of fields including actuarial science, economics, engineering, environmental sciences, management, medicine, operations, public health, and social and behavioural sciences. Many scientific problems in the area focalize interests in the relationship between various possibly coarsened event times and a set of covariates for the purposes of explanation and prediction. Such relationship is conventionally characterized by regression. Proportional hazard regression is the most commonly-used parametric (or semiparametric) regression for lifetime data. One major concern for parametric regression is that statistical inference can be misleading if model assumptions are not satisfied. Recursive partitioning methods are powerful non-parametric alternatives using machine-learning techniques. They are appealing since they require no specification of the model structure and they usually lead to practically friendly models with intuitive interpretation so that they have great potential to be easily accepted by practitioners. Most existing literature of recursive partitioning is restricted to the analysis of completely observed responses (categorical or continuous) or right-censored survival data, however, complex life history data with multiple types of data coarsening remain to be developed. The objective of this research proposal is to provide a comprehensive account of novel recursive partitioning methods for life history processes.
对生命史过程的分析是统计科学的一个重要方面,在许多领域都有应用,包括精算学、经济学、工程学、环境科学、管理学、医学、运筹学、公共卫生以及社会和行为科学。该领域的许多科学问题都集中在各种可能粗糙的事件时间与一组协变量之间的关系上,以进行解释和预测。这种关系通常以回归为特征。比例风险回归是生命周期数据最常用的参数(或半参数)回归。参数回归的一个主要问题是,如果模型假设不满足,统计推断可能会产生误导。递归划分方法是使用机器学习技术的强大的非参数替代方法。它们很有吸引力,因为它们不需要模型结构的说明,并且它们通常会导致具有直观解释的实际友好模型,因此它们具有很大的潜力,易于被实践者接受。现有的递归划分文献大多局限于对完全观察到的反应(分类或连续)或右截尾生存数据的分析,然而,具有多种类型数据粗化的复杂生活史数据仍有待开发。本研究计划的目的是为生命史过程提供一种新的递归划分方法的综合说明。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Diao, Liqun其他文献
Examining the use of decision trees in population health surveillance research: an application to youth mental health survey data in the COMPASS study
- DOI:
10.24095/hpcdp.43.2.03 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:2.9
- 作者:
Battista, Katelyn;Diao, Liqun;Leatherdale, Scott T. - 通讯作者:
Leatherdale, Scott T.
Using Decision Trees to Examine Environmental and Behavioural Factors Associated with Youth Anxiety, Depression, and Flourishing.
- DOI:
10.3390/ijerph191710873 - 发表时间:
2022-08-31 - 期刊:
- 影响因子:0
- 作者:
Battista, Katelyn;Patte, Karen A.;Diao, Liqun;Dubin, Joel A.;Leatherdale, Scott T. - 通讯作者:
Leatherdale, Scott T.
Censoring Unbiased Regression Trees and Ensembles
- DOI:
10.1080/01621459.2017.1407775 - 发表时间:
2019-01-02 - 期刊:
- 影响因子:3.7
- 作者:
Steingrimsson, Jon Arni;Diao, Liqun;Strawderman, Robert L. - 通讯作者:
Strawderman, Robert L.
Adaptive response-dependent two-phase designs: Some results on robustness and efficiency
- DOI:
10.1002/sim.9516 - 发表时间:
2022-07-07 - 期刊:
- 影响因子:2
- 作者:
Yang, Ce;Diao, Liqun;Cook, Richard J. - 通讯作者:
Cook, Richard J.
Diao, Liqun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Diao, Liqun', 18)}}的其他基金
Recursive Partitioning Methods for Life History Processes
生命史过程的递归划分方法
- 批准号:
RGPIN-2016-04396 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Recursive Partitioning Methods for Life History Processes
生命史过程的递归划分方法
- 批准号:
RGPIN-2016-04396 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Recursive Partitioning Methods for Life History Processes
生命史过程的递归划分方法
- 批准号:
RGPIN-2016-04396 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Recursive Partitioning Methods for Life History Processes
生命史过程的递归划分方法
- 批准号:
RGPIN-2016-04396 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Recursive Partitioning Methods for Life History Processes
生命史过程的递归划分方法
- 批准号:
RGPIN-2016-04396 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
极性蛋白Partitioning defective3 homolog (Par3) 参与阿尔兹海默症发病以及β-淀粉样蛋白蓄积的机制研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
相似海外基金
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
- 批准号:
2348163 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
- 批准号:
2152999 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Recursive Partitioning Methods for Life History Processes
生命史过程的递归划分方法
- 批准号:
RGPIN-2016-04396 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
- 批准号:
2152998 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Recursive Partitioning Methods for Life History Processes
生命史过程的递归划分方法
- 批准号:
RGPIN-2016-04396 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Recursive Partitioning Methods for Life History Processes
生命史过程的递归划分方法
- 批准号:
RGPIN-2016-04396 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Recursive Partitioning Methods for Life History Processes
生命史过程的递归划分方法
- 批准号:
RGPIN-2016-04396 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Recursive Partitioning Methods for Life History Processes
生命史过程的递归划分方法
- 批准号:
RGPIN-2016-04396 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Recursive partitioning and ensemble methods for classifying an ordinal response
用于对序数响应进行分类的递归划分和集成方法
- 批准号:
7805045 - 财政年份:2009
- 资助金额:
$ 1.31万 - 项目类别:
Recursive partitioning and ensemble methods for classifying an ordinal response
用于对序数响应进行分类的递归划分和集成方法
- 批准号:
7670456 - 财政年份:2008
- 资助金额:
$ 1.31万 - 项目类别: