Advanced signal processing and systems identification for investigating the brain’s resting-state
用于研究大脑静息状态的先进信号处理和系统识别
基本信息
- 批准号:RGPIN-2014-05931
- 负责人:
- 金额:$ 2.26万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research aims to develop state-of-the art methods for the analysis of physiological signals and systems, focusing on methods that are data-driven, i.e. they do not rely on prior assumptions about system structure, and are able to quantify dynamic nonlinearities and/or time-varying behavior. While the envisioned methodological contributions are of general applicability, we will specifically consider customizing them for application to cerebral hemodynamics and brain resting-state network data analysis. We will mostly concentrate on modeling approaches that employ the concept of basis expansions, as such approaches significantly reduce the required number of free parameters (especially for nonlinear systems) and that they have proven to be successful in bioengineering-related application. Specifically they have been widely used for modeling biological systems, including those studied in the rapidly developing field of functional neuroimaging. The main aims of the proposed research program are: (i) to optimize basis expansions techniques for modeling nonlinear and/or nonstationary systems by combining principles from machine learning and more traditional systems identification, such as Bayesian estimation, neural network architectures and recursive estimation schemes respectively. In the longer term we aim to provide a general framework that will link nonlinear systems identification with statistical/ machine learning techniques. (ii) to apply time-varying techniques to investigate the effect of nonstationarities on cerebral hemodynamics and human brain resting-state network analyses. To this end we will use already existing data from multiple modalities (fMRI, simultaneous EEG-fMRI, MEG) as well as collect long duration data at the Brain Imaging Center of the Montreal Neurological Institute, including simultaneous EEG-fMRI as well as simultaneous EEG-MEG. (iii) to investigate the characteristics of resting-state networks over multiple scales by using the aforementioned multimodal data, which exploit the advantages of each modality (space resolution of fMRI with time resolution of EEG and MEG), as well as simulations from biophysical (forward models) (iv) integrate measures of hemodynamics and autoregulation provided by transcranial Doppler ultrasound with functional neuroimaging (particularly fMRI) by using biophysical and data-driven models as well as by collecting relevant physiological signals (pressure, pulse wave velocity, cerebral blood flow velocity) in the MR scanner. This is anticipated to enhance the interpretation of both aspects of cerebral hemodynamics (systemic as yielded by Doppler ultrasound and regional as yielded by fMRI) and to elucidate the functional role of resting-state network activity in a clearer manner, by further disentangling it into autonomic and cognitive factors. The impact of the proposed research is expected to be significant as it will provide better understanding of cerebral hemodynamics and resting-state brain functional networks, with both exhibiting significant potential as biomarkers in clinical studies.
拟议的研究旨在开发用于分析生理信号和系统的最先进方法,重点是数据驱动的方法,即它们不依赖于有关系统结构的先验假设,并且能够量化动态非线性和/或时变行为。虽然设想的方法的贡献是普遍适用的,我们将专门考虑定制它们的应用程序,脑血流动力学和大脑静息状态网络数据分析。我们将主要集中在采用基展开概念的建模方法上,因为这种方法显着减少了所需的自由参数(特别是对于非线性系统),并且它们已被证明在生物工程相关应用中是成功的。具体而言,它们已被广泛用于生物系统建模,包括在快速发展的功能性神经成像领域中研究的生物系统。拟议的研究计划的主要目标是:(i)通过结合机器学习和更传统的系统识别原理,如贝叶斯估计,神经网络架构和递归估计方案,优化用于建模非线性和/或非平稳系统的基扩展技术。从长远来看,我们的目标是提供一个通用框架,将非线性系统识别与统计/机器学习技术联系起来。(ii)应用时变技术研究非平稳性对脑血流动力学和人脑静息状态网络分析的影响。为此,我们将使用来自多种模式(fMRI,同步EEG-fMRI,MEG)的现有数据,并在蒙特利尔神经学研究所的脑成像中心收集长期数据,包括同步EEG-fMRI以及同步EEG-MEG。(iii)通过使用上述多模态数据(利用每种模态的优势)来研究多个尺度上的静止状态网络的特征(fMRI的空间分辨率与EEG和MEG的时间分辨率),以及生物物理学的模拟(前向模型)(iv)将经颅多普勒超声提供的血流动力学和自动调节措施与功能性神经成像相结合通过使用生物物理和数据驱动的模型以及通过在MR扫描仪中收集相关的生理信号(压力、脉搏波速度、脑血流速度),来实现功能磁共振成像(特别是功能磁共振成像)。预计这将增强对脑血流动力学两个方面的解释(多普勒超声产生的系统性和功能磁共振成像产生的区域性),并通过进一步将其分解为自主和认知因素,以更清晰的方式阐明静息状态网络活动的功能作用。预计拟议研究的影响将是显著的,因为它将提供对脑血流动力学和静息态脑功能网络的更好理解,两者都表现出作为临床研究中生物标志物的显著潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mitsis, Georgios其他文献
Temporal dynamics of lactate concentration in the human brain during acute inspiratory hypoxia.
- DOI:
10.1002/jmri.23815 - 发表时间:
2013-03 - 期刊:
- 影响因子:4.4
- 作者:
Harris, Ashley D.;Roberton, Victoria H.;Huckle, Danielle L.;Saxena, Neeraj;Evans, C. John;Murphy, Kevin;Hall, Judith E.;Bailey, Damian M.;Mitsis, Georgios;Edden, Richard A. E.;Wise, Richard G. - 通讯作者:
Wise, Richard G.
Mitsis, Georgios的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mitsis, Georgios', 18)}}的其他基金
Identification of time-varying multivariate physiological systems and applications to cerebrovascular regulatory mechanisms and dynamic brain functional connectivity from multimodal measurements
通过多模态测量识别时变多元生理系统及其在脑血管调节机制和动态脑功能连接中的应用
- 批准号:
RGPIN-2019-06638 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Identification of time-varying multivariate physiological systems and applications to cerebrovascular regulatory mechanisms and dynamic brain functional connectivity from multimodal measurements
通过多模态测量识别时变多元生理系统及其在脑血管调节机制和动态脑功能连接中的应用
- 批准号:
RGPIN-2019-06638 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Investigation of the effects of COVID-19 on the functional resting-state and respiratory-related organization of the brain using multimodal neuroimaging
使用多模态神经影像研究 COVID-19 对大脑功能性静息状态和呼吸相关组织的影响
- 批准号:
560905-2020 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Alliance Grants
Identification of time-varying multivariate physiological systems and applications to cerebrovascular regulatory mechanisms and dynamic brain functional connectivity from multimodal measurements
通过多模态测量识别时变多元生理系统及其在脑血管调节机制和动态脑功能连接中的应用
- 批准号:
RGPIN-2019-06638 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Identification of time-varying multivariate physiological systems and applications to cerebrovascular regulatory mechanisms and dynamic brain functional connectivity from multimodal measurements
通过多模态测量识别时变多元生理系统及其在脑血管调节机制和动态脑功能连接中的应用
- 批准号:
RGPIN-2019-06638 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Advanced signal processing and systems identification for investigating the brain's resting-state
用于研究大脑静息状态的先进信号处理和系统识别
- 批准号:
RGPIN-2014-05931 - 财政年份:2018
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Signal-to-noise ratio decision trees for extracting continuous, reliable and real-time heart rate variability (HRV) measurements from an ambulatory ECG monitoring device
信噪比决策树,用于从动态心电图监测设备中提取连续、可靠和实时的心率变异性 (HRV) 测量值
- 批准号:
516212-2017 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Engage Grants Program
Advanced signal processing and systems identification for investigating the brain’s resting-state
用于研究大脑静息状态的先进信号处理和系统识别
- 批准号:
RGPIN-2014-05931 - 财政年份:2016
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Advanced signal processing and systems identification for investigating the brain’s resting-state
用于研究大脑静息状态的先进信号处理和系统识别
- 批准号:
RGPIN-2014-05931 - 财政年份:2015
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Intelligent signal processing for assessing biological rhythms from wearable devices
用于评估可穿戴设备生物节律的智能信号处理
- 批准号:
491634-2015 - 财政年份:2015
- 资助金额:
$ 2.26万 - 项目类别:
Engage Grants Program
相似国自然基金
基于知识-数据驱动的快速路多车道车速-车距非均匀分布下交通流建模研究
- 批准号:2025JJ50457
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
组蛋白乙酰化修饰ATG13激活自噬在牵张应力介导骨缝Gli1+干细胞成骨中的机制研究
- 批准号:82370988
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
胰岛素和细菌信号协同调节巨噬细胞免疫反应的作用
- 批准号:92057105
- 批准年份:2020
- 资助金额:89.0 万元
- 项目类别:重大研究计划
谷氨酰胺缺失引发的线粒体融合调控肿瘤细胞代谢稳态的机制研究
- 批准号:31900542
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
一种新的质子感知Gq蛋白偶联受体的筛选及其鉴定
- 批准号:31960149
- 批准年份:2019
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
钙信号负向调节因子IRBIT抑制肝癌细胞恶性生物学行为的分子机制研究
- 批准号:31960151
- 批准年份:2019
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
内质网–质膜互作在凋亡细胞磷脂酰丝氨酸外翻过程中的作用机制研究
- 批准号:91954114
- 批准年份:2019
- 资助金额:76.0 万元
- 项目类别:重大研究计划
基于钙信号特征机制的肿瘤转移调控研究
- 批准号:31970729
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
GRK2-GPR161协同调控Hh通路信号传递分子机制的研究
- 批准号:31970738
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Smurf1介导的p120-catenin单泛素化修饰在上皮间质转化及肿瘤扩散过程中的作用和分子机制的研究
- 批准号:31970742
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
Non-invasive Condition Monitoring of Ventricular Assistive Devices Using Automated Advanced Acoustic Methods
使用自动化先进声学方法对心室辅助装置进行无创状态监测
- 批准号:
10629554 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
- 批准号:
10753675 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Harmony AI: Natural Language Processing Enabling Advanced Biomanufacturing
Harmony AI:自然语言处理实现先进生物制造
- 批准号:
10761082 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Research on advanced multimodal signal processing and compression
先进多模态信号处理和压缩研究
- 批准号:
23K11155 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probing an increased reliance on reticulospinal motor pathways in chronic hemiparetic stroke with advanced spinal cord functional MRI
利用先进的脊髓功能 MRI 探讨慢性偏瘫卒中对网状脊髓运动通路的依赖性增加
- 批准号:
10750576 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Optimizing Advanced Prostate Cancer Care Among US Veterans
优化美国退伍军人的先进前列腺癌护理
- 批准号:
10634231 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Advanced signal processing methods for neural data analysis to support development of brain dynamic biomarkers for research and clinical applications in patients with Alzheimer's and related dementias
用于神经数据分析的先进信号处理方法,支持开发大脑动态生物标志物,用于阿尔茨海默氏症和相关痴呆症患者的研究和临床应用
- 批准号:
10739673 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Advanced optical monitoring of free tissue transfer hemodynamics
自由组织转移血流动力学的先进光学监测
- 批准号:
479281 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Operating Grants
Heart Rate Dynamics in Response to Upper-Extremity Function Test to Identify Irreversible Frailty After Invasive Therapy in Older Adults with Advanced Heart Disease
心率动态对上肢功能测试的反应,以识别患有晚期心脏病的老年人在侵入性治疗后的不可逆转的虚弱
- 批准号:
10582957 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Advanced Signal Processing Enabled Massive MIMO With NOMA
先进的信号处理通过 NOMA 实现大规模 MIMO
- 批准号:
RGPIN-2020-06815 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual