Advancement in Solid-Liquid Heat Transfer and Latent Heat Energy Storage Applications

固液传热和潜热储能应用的进展

基本信息

  • 批准号:
    RGPIN-2014-06493
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Solid-liquid phase change processes are encountered in a wide variety of fields including: energy, environmental, material processing and microelectronics. They are found in such applications as: latent heat energy storage systems (LHESS), temperature control and management. LHESS are used to store thermal energy through the melting of phase change materials (PCMs); this energy can be recuperated when the PCMs solidifies. This enables the temporal decoupling of thermal energy input and output useful for renewable (solar, wind) or waste heat applications for example. Also, through this phase change process significantly more thermal energy can be stored in PCMs compared to sensible heating of a substance like water. However, PCMs have very low thermal conductivities which can make storing or retrieving thermal energy from them a lengthy process unless proper design and control strategies are applied to enhance the apparent thermal conductivity or optimize the heat exchange process.Study of these systems involves research in heat transfer and fluid mechanics; and it has been shown by the applicant and others that both conduction and natural convection play a significant role in the overall phase change behaviour inside LHESS. However, most existing literature on the subject presents studies where only one heat transfer mode is considered, typically conduction, which places a complete understanding of the coupled processes still out of reach. Optimization and thermal enhancement of LHESS requires a complete understanding of the impact of natural convection and the melting/solidification heat transfer processes within the systems. To address these research deficiencies, the objectives of this research program are to: 1) study the fundamentals of solid-liquid phase change heat transfer to further the understanding of the impact of natural convection in the liquid melt on the overall phase change process in various system geometries and using various PCMs; 2) design and optimize LHESS for thermal storage for renewable energy and waste heat applications to counteract the low thermal conductivity of PCM and test under real-time solar thermal operations. Outcomes from this research will be a detailed and accurate understanding of natural convection during melting and strategies to enhance heat transfer during every mode of operation of LHESS (charging, discharging, simultaneous). Experimental results will serve to validate numerical models of phase change heat transfer prepared on commercial software used to facilitate the early adoption of the models by practicing engineers. Finally, a methodology to design the heat exchangers found inside LHESS to optimize their operation, and energy input and output rates as a function of the storage application will be developed.This is an important experimental and theoretical research area because proper understanding of these processes, and their application to energy and thermal systems, will facilitate the management of energy demand, use and production. For example, LHESS can be used to store thermal energy during off-peak electricity demand periods, reducing the amount of electricity produced to meet the demand during peak periods. Similar storage systems can be used to store solar energy in order to use it later in the day when the sun is down. As another example, small amounts of PCM can be incorporated into electronic devices to manage and delay temperature increase during intermittent operations. Our country, along with the rest of the world, will face an energy crisis in the decades to come. In that context, research in the area of thermal/energy engineering has the potential to lead to the development of new and vital energy technologies for Canada.
固液相变过程在能源、环境、材料加工和微电子等各个领域都有应用。它们被应用于潜热储能系统(LHESS)、温度控制和管理等领域。LHESS通过相变材料(PCMs)的熔化来储存热能;当pcm固化时,这些能量可以被回收。这使得热能输入和输出的时间解耦对可再生能源(太阳能、风能)或废热应用非常有用。此外,与水等物质的显着加热相比,通过这种相变过程可以在pcm中存储更多的热能。然而,pcm具有非常低的导热系数,这使得从它们中存储或回收热能成为一个漫长的过程,除非采用适当的设计和控制策略来提高表观导热系数或优化热交换过程。这些系统的研究涉及传热和流体力学的研究;申请人和其他人已经表明,传导和自然对流在LHESS内部的整体相变行为中起着重要作用。然而,关于该主题的大多数现有文献都只考虑了一种传热模式,通常是传导,这使得对耦合过程的完全理解仍然遥不可及。LHESS的优化和热增强需要完全了解系统内自然对流和熔化/凝固传热过程的影响。为了解决这些研究不足,本研究计划的目标是:1)研究固液相变传热的基本原理,以进一步了解液体熔体中自然对流对各种系统几何形状和使用各种pcm的整体相变过程的影响;2)设计和优化用于可再生能源和废热应用的储热LHESS,以抵消PCM的低导热性,并在实时太阳能热操作下进行测试。本研究的结果将是详细和准确地了解熔融过程中的自然对流,以及在LHESS的每种操作模式(充、放、同时)中加强传热的策略。实验结果将用于验证在商业软件上准备的相变传热数值模型,以促进实践工程师早期采用这些模型。最后,提出了一种设计LHESS内部热交换器的方法,以优化其运行,以及能量输入和输出率作为存储应用的函数。这是一个重要的实验和理论研究领域,因为正确理解这些过程,以及它们在能源和热系统中的应用,将有助于能源需求、使用和生产的管理。例如,LHESS可用于在非高峰电力需求期间储存热能,从而减少高峰期间满足需求的发电量。类似的储存系统可以用来储存太阳能,以便在太阳下山时使用。作为另一个例子,少量的PCM可以加入到电子设备中,以管理和延迟间歇操作期间的温度升高。在未来的几十年里,我们的国家和世界其他国家一样,将面临能源危机。在这方面,热/能源工程领域的研究有可能导致加拿大发展新的和重要的能源技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Groulx, Dominic其他文献

Influence of fin size and distribution on solid-liquid phase change in a rectangular enclosure
  • DOI:
    10.1016/j.ijthermalsci.2017.10.038
  • 发表时间:
    2018-02-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Biwole, Pascal Henry;Groulx, Dominic;Chiu, Tim
  • 通讯作者:
    Chiu, Tim
Cooling of server electronics: A design review of existing technology
  • DOI:
    10.1016/j.applthermaleng.2016.03.056
  • 发表时间:
    2016-07-25
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Kheirabadi, Ali C.;Groulx, Dominic
  • 通讯作者:
    Groulx, Dominic
Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system
Experimental investigations of a latent heat energy storage unit using finned tubes
  • DOI:
    10.1016/j.applthermaleng.2015.12.080
  • 发表时间:
    2016-05-25
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Kabbara, Moe;Groulx, Dominic;Joseph, Alain
  • 通讯作者:
    Joseph, Alain
Effects of the heat transfer fluid velocity on the storage characteristics of a cylindrical latent heat energy storage system: a numerical study
  • DOI:
    10.1007/s00231-011-0888-3
  • 发表时间:
    2012-03-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Ogoh, Wilson;Groulx, Dominic
  • 通讯作者:
    Groulx, Dominic

Groulx, Dominic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Groulx, Dominic', 18)}}的其他基金

Foundational Design Rules for Solid-Liquid Phase Change Material - Heat Exchanger (PCM-HX)
固液相变材料 - 热交换器 (PCM-HX) 的基本设计规则
  • 批准号:
    RGPIN-2019-05678
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Foundational Design Rules for Solid-Liquid Phase Change Material - Heat Exchanger (PCM-HX)
固液相变材料 - 热交换器 (PCM-HX) 的基本设计规则
  • 批准号:
    RGPIN-2019-05678
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Foundational Design Rules for Solid-Liquid Phase Change Material - Heat Exchanger (PCM-HX)
固液相变材料 - 热交换器 (PCM-HX) 的基本设计规则
  • 批准号:
    RGPIN-2019-05678
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Foundational Design Rules for Solid-Liquid Phase Change Material - Heat Exchanger (PCM-HX)
固液相变材料 - 热交换器 (PCM-HX) 的基本设计规则
  • 批准号:
    RGPIN-2019-05678
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Advancement in Solid-Liquid Heat Transfer and Latent Heat Energy Storage Applications
固液传热和潜热储能应用的进展
  • 批准号:
    RGPIN-2014-06493
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Visit and meeting with Chantier Naval Forillon and Innovation Maritime to discuss collaboration on future research projects on fishing vessel stability, safety and energy efficiency
拜访 Chantier Naval Forillon 和 Innovation Maritime 并与其会面,讨论未来渔船稳定性、安全性和能源效率研究项目的合作
  • 批准号:
    530630-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Connect Grants Level 1
Finite Element Modeling and Validation of the Behaviour and Performance of a Novel Thermal Measuring Sensor
新型热测量传感器的行为和性能的有限元建模和验证
  • 批准号:
    521155-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Engage Grants Program
Advancement in Solid-Liquid Heat Transfer and Latent Heat Energy Storage Applications
固液传热和潜热储能应用的进展
  • 批准号:
    RGPIN-2014-06493
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Multiscale thermal management of electronic components and enclosures
电子元件和外壳的多尺度热管理
  • 批准号:
    447483-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Collaborative Research and Development Grants
Multiscale thermal management of electronic components and enclosures
电子元件和外壳的多尺度热管理
  • 批准号:
    447483-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Collaborative Research and Development Grants

相似海外基金

CAREER: Manufacturing of Solid Particle-Liquid Metal Mixtures for Soft Robotics and Stretchable Electronics
职业:制造用于软机器人和可拉伸电子产品的固体颗粒-液体金属混合物
  • 批准号:
    2339780
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Atomic imaging of dynamic behaviour at solid-liquid interfaces
固液界面动态行为的原子成像
  • 批准号:
    EP/Y024303/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
LSIMPACT: Life-like Resilient Materials for Mitigating Liquid-Solid Impact Damage
LSIMPACT:用于减轻液固冲击损伤的逼真弹性材料
  • 批准号:
    EP/Y037103/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
Two Problems in Liquid-Solid Interaction
液固相互作用的两个问题
  • 批准号:
    2307811
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Temporal and Spatial Concentration of Energy Using Solid-Gas-Liquid Mixed Phases and Development to Improve Fatigue Strength of 3D Metals
利用固-气-液混合相进行能量的时空集中以及提高3D金属疲劳强度的开发
  • 批准号:
    23H01292
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Establishment of Partial Liquid Metal Dealloying for New Nanoporous Alloy Synthesis by Thermodynamic Control of Solid-Liquid Phase Equilibrium
固液相平衡热力学控制部分液态金属脱合金合成新型纳米多孔合金的建立
  • 批准号:
    23H01705
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New Salting-Out Phenomena of Water-Soluble Polymers at the Solid-Liquid Interface
水溶性聚合物固液界面盐析新现象
  • 批准号:
    23KJ0318
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of solid-liquid interface total-reflection x-ray spectroscopy with the sensitivity of a few nm and its application to track reactions at solid-liquid interfaces in a real-time manner
几纳米灵敏度固液界面全反射X射线光谱仪的研制及其在实时跟踪固液界面反应中的应用
  • 批准号:
    23K11710
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of the physics of solid-liquid-gas three-phase contact line near structures through the integration of nanoscale interfacial technologies
通过纳米级界面技术的集成阐明结构附近固-液-气三相接触线的物理性质
  • 批准号:
    22KK0249
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Solid-liquid Interactions and Interfacial Water Structuring Determine Slip and Drag in Turbulent Boundary Layer Flows
固液相互作用和界面水结构确定湍流边界层流中的滑移和阻力
  • 批准号:
    2241730
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了