Intelligent Placement of Apps and Users on Qlik Analytics Engines

Qlik Analytics Engine 上的应用程序和用户的智能放置

基本信息

  • 批准号:
    520265-2017
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Business analytics tools provide intuitive, visual analytics solutions to allow organizations to discover the storythat lives within their data. Increasingly, business intelligence solutions are utilized across a variety ofindustries, including, healthcare, financial services, retail and life sciences. In this setting, there is a need formachine learning solutions that may be used to optimize the resource-usage of analytics applications incloud-based systems. There are several factors which need to be taken into consideration when aiming to findthe optimal intelligent analytics application placement solutions. Firstly, the applications' behaviours inmemory, and the CPU usages, are determined by a number of factors such as the amount of data included, thecardinality of the data, the complexity of the operations (e.g. aggregation or extensive sorting), the nature of thedata model, as well as the sizes and locations of the data sources. In addition, the usage patterns of differenttypes of users may vary considerably. For instance, push-button knowledge workers' usages may be far lessresource-intensive than that of data scientists, who would typically perform advanced, ad hoc analytics. Thisproject concerns the development of machine intelligence algorithms to address these issues, by buildingadaptive solutions to greatly improve placement policies of analytics applications across cloud-based platforms.
业务分析工具提供直观、可视化的分析解决方案,让组织能够发现数据中的故事。商业智能解决方案越来越多地用于各种行业,包括医疗保健、金融服务、零售和生命科学。在这种情况下,需要一种机器学习解决方案,可以用于优化基于计算机的系统的分析应用程序的资源使用。在寻找最佳智能分析应用程序放置解决方案时,需要考虑几个因素。首先,应用程序在内存中的行为和CPU使用率由许多因素决定,例如包含的数据量,数据的基数,操作的复杂性(例如聚合或广泛排序),数据模型的性质以及数据源的大小和位置。此外,不同类型用户的使用模式可能差异很大。例如,按钮式知识工作者的使用可能比数据科学家的使用少得多,数据科学家通常会执行高级的临时分析。该项目关注机器智能算法的开发,以解决这些问题,通过构建自适应解决方案,大大提高跨云平台的分析应用程序的放置策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Viktor, Herna其他文献

Catering for unique tastes: Targeting grey-sheep users recommender systems through one-class machine learning
  • DOI:
    10.1016/j.eswa.2020.114061
  • 发表时间:
    2021-03-15
  • 期刊:
  • 影响因子:
    8.5
  • 作者:
    Alabdulrahman, Rabaa;Viktor, Herna
  • 通讯作者:
    Viktor, Herna
Protein-protein interaction prediction with deep learning: A comprehensive review.

Viktor, Herna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Viktor, Herna', 18)}}的其他基金

Learning in the presence of change: challenges and algorithms for data stream mining
在变化中学习:数据流挖掘的挑战和算法
  • 批准号:
    RGPIN-2018-04047
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Learning in the presence of change: challenges and algorithms for data stream mining
在变化中学习:数据流挖掘的挑战和算法
  • 批准号:
    RGPIN-2018-04047
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Learning in the presence of change: challenges and algorithms for data stream mining
在变化中学习:数据流挖掘的挑战和算法
  • 批准号:
    RGPIN-2018-04047
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Learning in the presence of change: challenges and algorithms for data stream mining
在变化中学习:数据流挖掘的挑战和算法
  • 批准号:
    RGPIN-2018-04047
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Learning in the presence of change: challenges and algorithms for data stream mining
在变化中学习:数据流挖掘的挑战和算法
  • 批准号:
    RGPIN-2018-04047
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Real-time Mining of Dynamic, Fast Evolving Data
实时挖掘动态、快速变化的数据
  • 批准号:
    261294-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Real-time Mining of Dynamic, Fast Evolving Data
实时挖掘动态、快速变化的数据
  • 批准号:
    261294-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Personalized user profiling for individualized wellness programs
针对个性化健康计划的个性化用户分析
  • 批准号:
    491049-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program
Real-time Mining of Dynamic, Fast Evolving Data
实时挖掘动态、快速变化的数据
  • 批准号:
    261294-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Real-time Mining of Dynamic, Fast Evolving Data
实时挖掘动态、快速变化的数据
  • 批准号:
    261294-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Promoting Child and Carer Wellbeing and Placement Stability in Kinship Care
促进儿童和护理人员的福祉以及亲属护理中的安置稳定性
  • 批准号:
    LP220100006
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Linkage Projects
Applying digital archeology to rock art placement
将数字考古学应用于岩画布局
  • 批准号:
    DE240100030
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Early Career Researcher Award
An environmental evaluation of deep-sea mine tailings placement (DSTP)
深海尾矿堆放环境评价(DSTP)
  • 批准号:
    2860018
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Studentship
Study on optimal placement of urban energy equipment for IEA Phase 6
IEA第六期城市能源设备优化布局研究
  • 批准号:
    23K04141
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A UK Investigation into the Characteristics and Experiences of Children in Care who Have Experienced Significant Placement Instability
英国对经历过严重安置不稳定的照护儿童的特征和经历进行的调查
  • 批准号:
    2872778
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Studentship
"Where have you been?" - An exploration of excluded young people's experiences of placement at Pupil Referral Units (PRUs) and their transitions betwe
“你去哪儿了?”
  • 批准号:
    2884551
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Studentship
Fast Agile Copper Turns and Robotic Magnet placement (FACTOREM)
快速敏捷铜匝和机器人磁体放置 (FACTOREM)
  • 批准号:
    10055939
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative R&D
A Student Placement Program for Mental Health Interdisciplinary & Community-Engaged Initiatives
心理健康跨学科学生安置计划
  • 批准号:
    480874
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Miscellaneous Programs
Optimal geographic placement of integrated community health services centres: with a focus on health equity and sustainability
综合社区卫生服务中心的最佳地理位置:注重健康公平和可持续性
  • 批准号:
    500548
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Operating Grants
FTMA: Babraham Institute Placement and Training Opportunities for Researchers, Technicians and Research Professionals
FTMA:巴布拉汉姆研究所为研究人员、技术人员和研究专业人员提供的安置和培训机会
  • 批准号:
    BB/X017850/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了