Deep Learning of Representations
表示的深度学习
基本信息
- 批准号:RGPIN-2014-05917
- 负责人:
- 金额:$ 5.54万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Artificial intelligence requires computers to have knowledge of the world around us, knowledge they can use to answer questions and take decisions. Knowledge can be either hard-wired or learned from data and usually both sources of information are used. Machine learning algorithms endow computers with the ability to acquire knowledge from examples. In the age of big data, there is a great potential in the ability to tap this immense source of information. Representation learning algorithms are machine learning algorithms which also involve the learning of representations. The data (such as an image or a document) seen by a computer must be represented, and better representations make it easier to capture the statistical dependencies present and to learn to answer questions. Whereas representations are traditionally crafted by hand and engineered, recent years have shown that they can be learned and this can have drastic impact on the predictive ability of the learners. Deep learning, or learning of deep representations, is the subject of this proposal. It involves learning multiple levels of representation, corresponding to different levels of abstractions. In the past five years there has been a tremendous impact of research on deep learning, both at an academic level and with industrial breakthroughs. This proposal asks what are the current qualitative deficiencies of the current deep learning algorithms and proposes ideas for how to move beyond these limitations and towards AI. The main limitations that are discussed here regard the ways to scale up, because current models still have the size and capabilities of insect brains and do not even reach the perceptual abilities of rodents. Although faster and larger computers will matter, it is hypothesized that such advances in hardware will not suffice. For example, parallelization of the current learning procedures is not trivial and yet this is where computing power continues to grow. There also seem to be numerical optimization challenges that cannot be solved by simply pouring ten times more compute power, such as real or apparent local minima arising in the learning dynamics, for which it is not sufficient to restart thousands of times the optimization procedures: the result remains poor unless a different initialization procedure is used. There are also fundamental challenges regarding unsupervised learning: whereas most empirical progress of recent years has been with supervised learning (where humans have labeled data and told the computer what to answer to many questions), the greatest promise for future breakthroughs may come from unsupervised learning procedures (coupled with supervised learning). The main challenge there arises out of the intractability of the normalization constant involved in probabilistic models with many random variables and many high-probability modes separated by vast regions of low probability, a situation that is the most common in artificial intelligence applications. Although Monte-Carlo Markov chain methods are the most general solutions to this problem, new and maybe radically different ways of addressing the problem may be required and will be explored. Finally, this proposal considers the very basic question of what is a good representation, and proposes to view the different strategies we have to obtain good representations as priors that can help the learner in the very important task of disentangling the underlying factors of variation, i.e., of figuring out and separating from each other the factors that explain the data. As in past research of the applicant, these algorithmic explorations will be evaluated on challenging applications involving real data, from images and video to natural language text, or combining multiple modalities.
人工智能要求计算机了解我们周围的世界,这些知识可以用来回答问题和做出决定。知识既可以是硬连线的,也可以是从数据中学习的,通常这两种信息来源都被使用。机器学习算法赋予计算机从示例中获取知识的能力。在大数据时代,挖掘这一巨大信息来源的能力具有巨大潜力。表示学习算法是也涉及表示学习的机器学习算法。计算机看到的数据(如图像或文档)必须被表示,更好的表示可以更容易地捕获存在的统计依赖关系并学习回答问题。虽然表征传统上是手工制作和设计的,但近年来已经表明它们是可以学习的,这可能对学习者的预测能力产生巨大影响。深度学习或深度表征的学习是这个提议的主题。它涉及到学习多层次的表示,对应于不同层次的抽象。在过去的五年里,深度学习的研究产生了巨大的影响,无论是在学术层面还是在工业上都取得了突破。该提案提出了当前深度学习算法的质量缺陷,并提出了如何超越这些限制并走向人工智能的想法。这里讨论的主要限制是关于扩大规模的方法,因为目前的模型仍然具有昆虫大脑的大小和能力,甚至没有达到啮齿动物的感知能力。虽然更快更大的计算机将是重要的,但据推测,硬件的这种进步是不够的。例如,当前学习过程的并行化并不是微不足道的,但这正是计算能力持续增长的地方。还有一些数值优化的挑战是无法通过简单地投入十倍的计算能力来解决的,例如在学习动态中出现的真实的或明显的局部最小值,对于这些挑战,重新启动数千次优化过程是不够的:除非使用不同的初始化过程,否则结果仍然很差。无监督学习也面临着根本性的挑战:尽管近年来大多数经验性的进展都是在监督学习(人类标记数据并告诉计算机如何回答许多问题)方面,但未来突破的最大希望可能来自无监督学习程序(加上监督学习)。主要的挑战来自于概率模型中涉及的归一化常数的棘手性,其中有许多随机变量和许多高概率模式,这些模式被大量的低概率区域隔开,这种情况在人工智能应用中最常见。虽然蒙特-卡罗马尔可夫链方法是这个问题的最一般的解决方案,新的,也许根本不同的方式来解决这个问题可能需要,并将探讨。最后,这个建议考虑了什么是好的表征这个非常基本的问题,并建议将我们必须获得好的表征的不同策略视为先验,这些策略可以帮助学习者完成解开变化的潜在因素这一非常重要的任务,即,找出并将解释数据的因素相互分离。与申请人过去的研究一样,这些算法探索将在涉及从图像和视频到自然语言文本的真实的数据或组合多种模态的挑战性应用上进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bengio, Yoshua其他文献
Responses of pyramidal cell somata and apical dendrites in mouse visual cortex over multiple days.
- DOI:
10.1038/s41597-023-02214-y - 发表时间:
2023-05-17 - 期刊:
- 影响因子:9.8
- 作者:
Gillon, Colleen J.;Lecoq, Jerome A.;Pina, Jason E.;Ahmed, Ruweida;Billeh, Yazan N.;Caldejon, Shiella;Groblewski, Peter;Henley, Timothy M.;Kato, India;Lee, Eric;Luviano, Jennifer;Mace, Kyla;Nayan, Chelsea;Nguyen, Thuyanh V.;North, Kat;Perkins, Jed;Seid, Sam;Valley, Matthew T.;Williford, Ali;Bengio, Yoshua;Lillicrap, Timothy P.;Zylberberg, Joel;Richards, Blake A. - 通讯作者:
Richards, Blake A.
Quickly Generating Representative Samples from an RBM-Derived Process
- DOI:
10.1162/neco_a_00158 - 发表时间:
2011-08-01 - 期刊:
- 影响因子:2.9
- 作者:
Breuleux, Olivier;Bengio, Yoshua;Vincent, Pascal - 通讯作者:
Vincent, Pascal
Learning Deep Physiological Models of Affect
- DOI:
10.1109/mci.2013.2247823 - 发表时间:
2013-05-01 - 期刊:
- 影响因子:9
- 作者:
Martinez, Hector P.;Bengio, Yoshua;Yannakakis, Georgios N. - 通讯作者:
Yannakakis, Georgios N.
CACHE (Critical Assessment of Computational Hit-finding Experiments): A public-private partnership benchmarking initiative to enable the development of computational methods for hit-finding.
- DOI:
10.1038/s41570-022-00363-z - 发表时间:
2022-04 - 期刊:
- 影响因子:36.3
- 作者:
Ackloo, Suzanne;Al-awar, Rima;Amaro, Rommie E.;Arrowsmith, Cheryl H.;Azevedo, Hatylas;Batey, Robert A.;Bengio, Yoshua;Betz, Ulrich A. K.;Bologa, Cristian G.;Chodera, John D.;Cornell, Wendy D.;Dunham, Ian;Ecker, Gerhard F.;Edfeldt, Kristina;Edwards, Aled M.;Gilson, Michael K.;Gordijo, Claudia R.;Hessler, Gerhard;Hillisch, Alexander;Hogner, Anders;Irwin, John J.;Jansen, Johanna M.;Kuhn, Daniel;Leach, Andrew R.;Lee, Alpha A.;Lessel, Uta;Morgan, Maxwell R.;Moult, John;Muegge, Ingo;Oprea, Tudor, I;Perry, Benjamin G.;Riley, Patrick;Rousseaux, Sophie A. L.;Saikatendu, Kumar Singh;Santhakumar, Vijayaratnam;Schapira, Matthieu;Scholten, Cora;Todd, Matthew H.;Vedadi, Masoud;Volkamer, Andrea;Willson, Timothy M. - 通讯作者:
Willson, Timothy M.
STDP-Compatible Approximation of Backpropagation in an Energy-Based Model
- DOI:
10.1162/neco_a_00934 - 发表时间:
2017-03-01 - 期刊:
- 影响因子:2.9
- 作者:
Bengio, Yoshua;Mesnard, Thomas;Wu, Yuhuai - 通讯作者:
Wu, Yuhuai
Bengio, Yoshua的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bengio, Yoshua', 18)}}的其他基金
Novel generative active learning algorithms for exploring the space of antimicrobial peptides to respond to antibiotics resistance
用于探索抗菌肽空间以应对抗生素耐药性的新型生成主动学习算法
- 批准号:
DH-2022-00042 - 财政年份:2022
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Horizons
Autonomous Deep Learning for AI
人工智能自主深度学习
- 批准号:
RGPIN-2019-04822 - 财政年份:2022
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
Autonomous Deep Learning for AI
人工智能自主深度学习
- 批准号:
RGPIN-2019-04822 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
Autonomous Deep Learning for AI
人工智能自主深度学习
- 批准号:
RGPIN-2019-04822 - 财政年份:2020
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
Autonomous Deep Learning for AI
人工智能自主深度学习
- 批准号:
RGPIN-2019-04822 - 财政年份:2019
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
Chaire de recherche du Canada en algorithmes d'apprentissage statistique
加拿大学徒统计算法研究主席
- 批准号:
1000228368-2012 - 财政年份:2019
- 资助金额:
$ 5.54万 - 项目类别:
Canada Research Chairs
Chaire de recherche du Canada en algorithmes d'apprentissage statistique
加拿大学徒统计算法研究主席
- 批准号:
1000228368-2012 - 财政年份:2018
- 资助金额:
$ 5.54万 - 项目类别:
Canada Research Chairs
Chaire de recherche du Canada en algorithmes d'apprentissage statistique
加拿大学徒统计算法研究主席
- 批准号:
1000228368-2012 - 财政年份:2017
- 资助金额:
$ 5.54万 - 项目类别:
Canada Research Chairs
Deep Learning of Representations
表示的深度学习
- 批准号:
RGPIN-2014-05917 - 财政年份:2017
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
Deep learning for cognitive computing
认知计算的深度学习
- 批准号:
490785-2015 - 财政年份:2017
- 资助金额:
$ 5.54万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: RI:Medium:Understanding Events from Streaming Video - Joint Deep and Graph Representations, Commonsense Priors, and Predictive Learning
协作研究:RI:Medium:理解流视频中的事件 - 联合深度和图形表示、常识先验和预测学习
- 批准号:
2348689 - 财政年份:2023
- 资助金额:
$ 5.54万 - 项目类别:
Continuing Grant
On Learning Deep Representations of Financial Markets, and Applications of Deep and Representation Learning for Portfolio Optimization and Socially Responsible Investing
关于学习金融市场的深度表示,以及深度学习和表示学习在投资组合优化和社会责任投资中的应用
- 批准号:
576229-2022 - 财政年份:2022
- 资助金额:
$ 5.54万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Safer Autonomous Driving by Embedding Behaviors in Offline Map Representations with Deep Learning
通过深度学习将行为嵌入离线地图表示中,实现更安全的自动驾驶
- 批准号:
575360-2022 - 财政年份:2022
- 资助金额:
$ 5.54万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Non-linear partial differential equations, stochastic representations, and numerical approximation by deep learning
非线性偏微分方程、随机表示和深度学习数值逼近
- 批准号:
EP/W004070/1 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
Research Grant
CAREER: Learning Structured Representations with Deep Probabilistic Programs
职业:通过深度概率程序学习结构化表示
- 批准号:
2047253 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
Continuing Grant
Learning Tonal Representations of Music Signals Using Deep Neural Networks
使用深度神经网络学习音乐信号的音调表示
- 批准号:
443992185 - 财政年份:2020
- 资助金额:
$ 5.54万 - 项目类别:
Research Fellowships
A New Paradigm for Systems Physiology Modeling: Biomechanistic Learning Augmentation with Deep Differential Equation Representations (BLADDER)
系统生理学建模的新范式:利用深度微分方程表示的生物力学学习增强 (BLADDER)
- 批准号:
10206953 - 财政年份:2020
- 资助金额:
$ 5.54万 - 项目类别:
A New Paradigm for Systems Physiology Modeling: Biomechanistic Learning Augmentation with Deep Differential Equation Representations (BLADDER)
系统生理学建模的新范式:利用深度微分方程表示的生物力学学习增强 (BLADDER)
- 批准号:
10472818 - 财政年份:2020
- 资助金额:
$ 5.54万 - 项目类别:
Collaborative Research: RI:Medium:Understanding Events from Streaming Video - Joint Deep and Graph Representations, Commonsense Priors, and Predictive Learning
协作研究:RI:Medium:理解流视频中的事件 - 联合深度和图形表示、常识先验和预测学习
- 批准号:
1956050 - 财政年份:2020
- 资助金额:
$ 5.54万 - 项目类别:
Continuing Grant
Collaborative Research: RI:Medium: Understanding Events from Streaming Video - Joint Deep and Graph Representations, Commonsense Priors, and Predictive Learning
协作研究:RI:Medium:理解流视频中的事件 - 联合深度和图形表示、常识先验和预测学习
- 批准号:
1955154 - 财政年份:2020
- 资助金额:
$ 5.54万 - 项目类别:
Continuing Grant