Molecular Mechanisms of Marine Polysaccharide Depolymerization and Metabolism.

海洋多糖解聚和代谢的分子机制。

基本信息

  • 批准号:
    RGPIN-2014-04355
  • 负责人:
  • 金额:
    $ 6.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Ocean plant biomass [i.e. microalgae and macroalgae (seaweed)] is estimated to be ~1/200 that of terrestrial plant biomass yet the mass-normalized annual turnover rate of photosynthetically fixed carbon in the oceans is roughly two-orders of magnitude faster than on land. This extremely dynamic environment is therefore very important to the global carbon cycle. The cell wall and storage polymers of seaweed, which are the bulk of seaweed biomass, comprise a group of complex polysaccharides that are structurally different from those of terrestrial plants. This photosynthetically fixed carbon is returned to the global carbon cycle primarily through the metabolic action of microbes but the microbiology and biochemistry underlying the process remains poorly studied. **The overarching objective of this research program is to address how microbes depolymerize seaweed polysaccharides with the ultimate aim of providing molecular level detail for the pathways required to metabolize seaweed polysaccharides. The specific objectives are to:*1. Isolate uncharacterized seaweed polysaccharide degrading bacteria, sequence their genomes, then exploit these genomes with existing genomes to delineate potential seaweed polysaccharide metabolism pathways.*2. Analyse the specific and/or genome-wide expression of genes in selected bacteria in response to seaweed biomass or specific polysaccharides.*3. Use a structure-function approach to uncover the molecular details behind the enzymatic bioconversion of seaweed polysaccharides by bacteria.**Our initial approach will be to isolate aerobic seaweed degrading marine bacteria from local waters and exploit modern DNA sequencing technologies (e.g. Illumin HiSeq) to sequence their genomes. In addition to existing genomic, these new genomes will provide a rich resource to mine using bioinformatics approaches (e.g. automated genome annotation, annotation of carbohydrate-active enzymes with dbCAN) to give a broad view of the enzyme systems required to process seaweed polysaccharides (Objective 1). The genomic information will then be exploited using methods to analyse gene expression (qPCR, RNASeq, or microarray analysis) in response to particular seaweed biomass as growth substrates, such as intact seaweed or purified polysaccharides (Objective 2). Finally, the largest and most intensive objective that is receiving the bulk of our focus is to use a combination of molecular biology, recombinant protein expression, protein biochemistry, enzymology, and structural biology (primarily X-ray crystallography) to fully understand the molecular details of seaweed polysaccharide depolymerisation and utilization of the components (Objective 3).**This research program will provide detailed insight into the fundamentals of how microbes degrade seaweed polysaccharides. This is critical to unravelling how photosynthetically fixed carbon is recycled in our oceans and incorporating biochemical information into biogeochemical models of the global carbon cycle. Additionally, in a world that is seeing rising levels of greenhouse gases and climate change, eyes are being increasingly turned to "green" science, renewable resources, carbon neutral footprints, and alternative fuel sources. It has been generally overlooked but seaweed is a renewable resource whose cell wall and storage polysaccharides represent an attractive carbohydrate source for the production of bio-fuels, with many extremely appealing advantages over terrestrial feedstocks. Ultimately, the proposed research program will generate a knowledge platform that can be leveraged to design strategies for the enzymatic conversion of seaweed cell-wall polysaccharides into fermentable sugars that can be converted into biofuels.
据估计,海洋植物生物量[即微藻和大型藻类(海藻)]约为陆地植物生物量的1/200,但海洋中光合作用固定碳的质量标准化年周转率比陆地快大约两个数量级。因此,这种极其动态的环境对全球碳循环非常重要。海藻的细胞壁和储存聚合物是海藻生物质的主体,其包含一组结构上不同于陆生植物的复杂多糖。这种光合作用固定的碳主要通过微生物的代谢作用返回到全球碳循环中,但该过程的微生物学和生物化学研究仍然很少。** 该研究计划的总体目标是解决微生物如何降解海藻多糖,最终目的是为代谢海藻多糖所需的途径提供分子水平的细节。 具体目标是:*1.分离未表征的海藻多糖降解细菌,对其基因组进行测序,然后利用这些基因组与现有基因组来描绘潜在的海藻多糖代谢途径。2.分析选定细菌中响应海藻生物质或特定多糖的基因的特异性和/或全基因组表达。* 3.使用结构-功能方法来揭示细菌对海藻多糖进行酶促生物转化背后的分子细节。**我们最初的方法是从当地沃茨中分离好氧海藻降解海洋细菌,并利用现代DNA测序技术(例如Illumin HiSeq)对其基因组进行测序。除了现有的基因组,这些新的基因组将提供丰富的资源,使用生物信息学方法(例如,自动基因组注释,注释的碳水化合物活性酶与dbCAN),以提供一个广泛的视野所需的酶系统加工海藻多糖(目标1)。然后,将使用响应于作为生长基质的特定海藻生物质(例如完整海藻或纯化多糖)的基因表达分析方法(qPCR、RNASeq或微阵列分析)来利用基因组信息(目标2)。最后,我们关注的最大和最密集的目标是使用分子生物学,重组蛋白表达,蛋白质生物化学,酶学和结构生物学(主要是X射线晶体学)的组合,以充分了解海藻多糖解聚和组分利用的分子细节(目标3)。这项研究计划将提供详细的洞察微生物如何降解海藻多糖的基本原理。这对于揭示光合作用固定的碳如何在我们的海洋中循环以及将生物化学信息纳入全球碳循环的生物地球化学模型至关重要。此外,在一个温室气体和气候变化水平不断上升的世界里,人们的目光越来越多地转向“绿色”科学、可再生资源、碳中和足迹和替代燃料来源。它通常被忽视,但海藻是一种可再生资源,其细胞壁和储存多糖是生产生物燃料的有吸引力的碳水化合物来源,与陆地原料相比具有许多非常吸引人的优势。最终,拟议的研究计划将产生一个知识平台,可用于设计将海藻细胞壁多糖酶转化为可转化为生物燃料的可发酵糖的策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Boraston, Alisdair其他文献

Structural analysis of a putative family 32 carbohydrate-binding module from the Streptococcus pneumoniae enzyme EndoD

Boraston, Alisdair的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Boraston, Alisdair', 18)}}的其他基金

Molecular Mechanisms of Marine Polysaccharide Depolymerization and Metabolism
海洋多糖解聚和代谢的分子机制
  • 批准号:
    RGPIN-2019-03985
  • 财政年份:
    2022
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular Mechanisms of Marine Polysaccharide Depolymerization and Metabolism
海洋多糖解聚和代谢的分子机制
  • 批准号:
    RGPIN-2019-03985
  • 财政年份:
    2021
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular Mechanisms of Marine Polysaccharide Depolymerization and Metabolism
海洋多糖解聚和代谢的分子机制
  • 批准号:
    RGPIN-2019-03985
  • 财政年份:
    2020
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular Mechanisms of Marine Polysaccharide Depolymerization and Metabolism
海洋多糖解聚和代谢的分子机制
  • 批准号:
    RGPIN-2019-03985
  • 财政年份:
    2019
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced protein purification facility
先进的蛋白质纯化设施
  • 批准号:
    RTI-2019-00344
  • 财政年份:
    2018
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Research Tools and Instruments
Molecular Mechanisms of Marine Polysaccharide Depolymerization and Metabolism.
海洋多糖解聚和代谢的分子机制。
  • 批准号:
    RGPIN-2014-04355
  • 财政年份:
    2017
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular Mechanisms of Marine Polysaccharide Depolymerization and Metabolism.
海洋多糖解聚和代谢的分子机制。
  • 批准号:
    462163-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Molecular Mechanisms of Marine Polysaccharide Depolymerization and Metabolism.
海洋多糖解聚和代谢的分子机制。
  • 批准号:
    RGPIN-2014-04355
  • 财政年份:
    2016
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of enzymes to use for the modification of fucoidan.
用于修饰岩藻依聚糖的酶的分析。
  • 批准号:
    491210-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Engage Plus Grants Program
Molecular Mechanisms of Marine Polysaccharide Depolymerization and Metabolism.
海洋多糖解聚和代谢的分子机制。
  • 批准号:
    462163-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements

相似国自然基金

Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Standard Grant
Adaptation of marine zooplankton to climate change conditions: a multi-omic study of molecular mechanisms.
海洋浮游动物对气候变化条件的适应:分子机制的多组学研究。
  • 批准号:
    23K25049
  • 财政年份:
    2024
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319096
  • 财政年份:
    2024
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319098
  • 财政年份:
    2024
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Standard Grant
Adaptation of marine zooplankton to climate change conditions: a multi-omic study of molecular mechanisms.
海洋浮游动物对气候变化条件的适应:分子机制的多组学研究。
  • 批准号:
    22H03795
  • 财政年份:
    2022
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Molecular Mechanisms of Marine Polysaccharide Depolymerization and Metabolism
海洋多糖解聚和代谢的分子机制
  • 批准号:
    RGPIN-2019-03985
  • 财政年份:
    2022
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular Mechanisms of Marine Polysaccharide Depolymerization and Metabolism
海洋多糖解聚和代谢的分子机制
  • 批准号:
    RGPIN-2019-03985
  • 财政年份:
    2021
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular Mechanisms of Marine Polysaccharide Depolymerization and Metabolism
海洋多糖解聚和代谢的分子机制
  • 批准号:
    RGPIN-2019-03985
  • 财政年份:
    2020
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular Mechanisms of Marine Polysaccharide Depolymerization and Metabolism
海洋多糖解聚和代谢的分子机制
  • 批准号:
    RGPIN-2019-03985
  • 财政年份:
    2019
  • 资助金额:
    $ 6.19万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular Mechanisms of Marine Organohalogen Bioaccumulation and Neurotoxicity
海洋有机卤素生物累积和神经毒性的分子机制
  • 批准号:
    10172906
  • 财政年份:
    2018
  • 资助金额:
    $ 6.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了