Defects and patterns in the Calculus of Variations

变分法的缺陷和模式

基本信息

  • 批准号:
    RGPIN-2018-05588
  • 负责人:
  • 金额:
    $ 2.55万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

The object of this research proposal is the rigorous mathematical analysis of variational problems arising in physics, and of the solutions of the associated systems of partial differential equations (PDE). For many physical systems the realizable configurations are those which minimize (globally or locally) an energy functional. Among the functionals we will study are: Ginzburg-Landau models, introduced in the context of superconductivity, but also a paradigm for many phenomena in condensed matter physics and materials; the Landau-de Gennes model for nematic liquid crystals; and the Ohta-Kawasaki energy for di-block copolymers. These models have many fundamental features which reveal themselves in singular perturbation limits, when one or more parameters in the model are sent to zero or infinity. In these limiting regime the solutions are observed to develop geometrical singularities, such as vortices, disclinations, or domain walls, and these defects give the most salient features of the system.******The overall goal is to develop new analytical tools to study singularly perturbed variational problems, to shed light on physical phenomena observed in experiments and simulations. The emphasis will be on variational problems for vector-valued functions, for which the Euler-Lagrange equations will be systems of nonlinear PDE. Many tools normally employed in studying a single PDE do not extend to systems, and so the analytical challenges are considerable but the mathematical interest is great. For instance, in the Landau-de Gennes theory of liquid crystals the states are described by Q-tensor fields (symmetric traceless matrix-valued functions,) and the singularities often occur because of eigenvalue crossing. This presents analytical hurdles in identifying and localizing singularities (line and ring defects, or "boojums" lying on boundary surfaces) which have subtle energy signatures. Further, mathematical models of block copolymers incorporate essential nonlocal interactions, which adds an extra layer of complexity to the PDEs describing these materials.******Solving these problems will entail the development of new methods for systems of nonlinear and nonlocal PDE. I will blend my own ideas with innovations coming from nonlinear and geometric analysis, including sharp energy bounds (via vortex-ball constructions); monotonicity and eta-ellipticity methods (developed for harmonic maps); bifurcation techniques; Gamma-convergence techniques (giving limiting energies characterizing the shape and interactions of singularities); and concentration-compactness methods (which break down minimizers with complex structure into component pieces.) The analytical results obtained will give a more complete and reliable understanding of these models and the phenomena they describe, while providing new perspectives on the rich interplay between analysis, geometry, and physics.
本研究计划的目的是对物理学中出现的变分问题以及相关偏微分方程(PDE)系统的解进行严格的数学分析。 对于许多物理系统,可实现的配置是那些最小化(全局或局部)的能量泛函。我们将研究的泛函包括:金斯堡-朗道模型,在超导性的背景下引入,但也是凝聚态物理和材料中许多现象的范例; Landau-de Gennes模型用于液晶;和Ohta-Kawasaki能量用于二嵌段共聚物。 这些模型具有许多基本特征,当模型中的一个或多个参数被发送到零或无穷大时,这些特征在奇异摄动极限中显露出来。 在这些极限状态下,我们观察到解会产生几何奇异性,如涡旋、向错或畴壁,而这些缺陷是系统最显著的特征。总体目标是开发新的分析工具来研究奇摄动变分问题,揭示在实验和模拟中观察到的物理现象。 重点将放在向量值函数的变分问题上,对于向量值函数,欧拉-拉格朗日方程将是非线性偏微分方程组。 许多工具通常用于研究一个单一的偏微分方程不延伸到系统,所以分析的挑战是相当大的,但数学的兴趣是巨大的。 例如,在液晶的朗道-德热纳理论中,状态是由Q-张量场(对称无迹矩阵值函数)描述的,奇异性经常因为本征值交叉而出现。 这在识别和定位具有微妙能量特征的奇点(线和环缺陷,或位于边界表面上的“boojums”)方面提出了分析障碍。 此外,嵌段共聚物的数学模型包含了基本的非局部相互作用,这给描述这些材料的偏微分方程增加了额外的复杂性。解决这些问题将需要发展新的方法,系统的非线性和非局部偏微分方程。我将把我自己的想法与来自非线性和几何分析的创新融合在一起,包括尖锐的能量边界(通过涡球结构);单调性和η-椭圆率方法(为调和映射开发);分歧技术;伽马收敛技术(给出表征奇点形状和相互作用的极限能量);和集中紧致方法(将具有复杂结构的极小化器分解为组成部分)。所获得的分析结果将使我们对这些模型及其所描述的现象有一个更完整和可靠的理解,同时为分析、几何和物理之间的丰富相互作用提供了新的视角。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bronsard, Lia其他文献

Thin film liquid crystals with oblique anchoring and boojums
具有倾斜锚定和 boojums 的薄膜液晶
  • DOI:
    10.1016/j.anihpc.2020.02.002
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alama, Stan;Bronsard, Lia;Golovaty, Dmitry
  • 通讯作者:
    Golovaty, Dmitry
Saturn ring defect around a spherical particle immersed in a nematic liquid crystal
浸入向列液晶中的球形颗粒周围的土星环缺陷

Bronsard, Lia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bronsard, Lia', 18)}}的其他基金

Defects and patterns in the Calculus of Variations
变分法的缺陷和模式
  • 批准号:
    RGPIN-2018-05588
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Defects and patterns in the Calculus of Variations
变分法的缺陷和模式
  • 批准号:
    RGPIN-2018-05588
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Defects and patterns in the Calculus of Variations
变分法的缺陷和模式
  • 批准号:
    RGPIN-2018-05588
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Defects and patterns in the Calculus of Variations
变分法的缺陷和模式
  • 批准号:
    RGPIN-2018-05588
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Ginzburg-Landau models
Ginzburg-Landau 模型分析
  • 批准号:
    185065-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Ginzburg-Landau models
Ginzburg-Landau 模型分析
  • 批准号:
    185065-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Ginzburg-Landau models
Ginzburg-Landau 模型分析
  • 批准号:
    185065-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Ginzburg-Landau models
Ginzburg-Landau 模型分析
  • 批准号:
    185065-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Ginzburg-Landau models
Ginzburg-Landau 模型分析
  • 批准号:
    185065-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Singular limits and multi-phase systems
奇异极限和多相系统
  • 批准号:
    185065-2004
  • 财政年份:
    2012
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Spatiotemporal dynamics of acetylcholine activity in adaptive behaviors and response patterns
适应性行为和反应模式中乙酰胆碱活性的时空动态
  • 批准号:
    24K10485
  • 财政年份:
    2024
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
  • 批准号:
    2328117
  • 财政年份:
    2024
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Standard Grant
Uncovering the evolutionary patterns of the Aculeata stinger
揭示 Aculeata 毒刺的进化模式
  • 批准号:
    24K18174
  • 财政年份:
    2024
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Illuminating patterns and processes of water quality in U.S. rivers using physics-guided deep learning
使用物理引导的深度学习阐明美国河流的水质模式和过程
  • 批准号:
    2346471
  • 财政年份:
    2024
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
  • 批准号:
    2341950
  • 财政年份:
    2024
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
  • 批准号:
    2328119
  • 财政年份:
    2024
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Standard Grant
Effects of Environmental Change on Microbial Self-organized Patterns in Antarctic Lakes
环境变化对南极湖泊微生物自组织模式的影响
  • 批准号:
    2333917
  • 财政年份:
    2024
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Standard Grant
AGS-PRF: Understanding Historical Trends in Tropical Pacific Sea Surface Temperature Patterns
AGS-PRF:了解热带太平洋海面温度模式的历史趋势
  • 批准号:
    2317224
  • 财政年份:
    2024
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Fellowship Award
Collaborative Research: Linking carbon preferences and competition to predict and test patterns of functional diversity in soil microbial communities
合作研究:将碳偏好和竞争联系起来,预测和测试土壤微生物群落功能多样性的模式
  • 批准号:
    2312302
  • 财政年份:
    2024
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
  • 批准号:
    2327892
  • 财政年份:
    2024
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了