Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
基本信息
- 批准号:RGPIN-2018-04062
- 负责人:
- 金额:$ 4.15万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research program will revolve around two central open questions in number theory: firstly, the construction of global points on elliptic curves with the goal of better understanding the Birch and Swinnerton-Dyer conjecture, and secondly, Hilbert's twelfth problem and explicit class field theory, of which the analytic construction of class fields of real quadratic fields is the simplest prototypical special case. I intend to build on the significant progress I have achieved towards these questions in the last five years, most notably, (1) my work with Victor Rotger on p-adic deformations of diagonal cycles in the Chow groups of triple products of modular curves and Kuga-Sato varieties, which has led in particular to the proof of new cases of the Birch and Swinnerton-Dyer conjecture in analytic rank zero, for elliptic curves over Q twisted by ring class characters of real quadratic fields, and (2) my more recent work with Jan Vonk in the past year, which has revealed a previously unexpected theory of singular moduli for real quadratic fields enjoying striking parallels with the classical theory of complex multiplication. Both works offer complementary and promising avenues for better understanding the construction of Stark-Heegner points that I introduced around 2000, whose shoring up has been my primary research focus since that time. My work with Victor revolves around objects which we call "generalised Kato classes": global classes in the Selmer groups of elliptic curves (over appropriate number fields, class fields of real quadratic fields being a particularly tantalising special case) arising from p-adic deformations of special geometric objects in Chow groups or higher Chow groups of Shimura varieties. Our ongoing efforts aim to compare these classes with the images of Stark-Heegner points under the connecting homomorphism of Kummer theory. While not sufficient to establish the global nature of Stark-Heegner points, which are defined analytically as purely local objects, relating them to global Selmer classes is a decisive step in that direction. From an ostensibly quite different angle, my discovery with Jan that Stark-Heegner points can be recast in the broader framework of a (still conjectural) theory of complex multiplication for real quadratic fields in which the role of meromorphic modular functions is played by what we call "rigid meromorphic cocycles", seems to be full of promise for future progress. Indeed, we now dispose of convincing strategies for making some parts of this picture unconditional, potentially leading to a satisfying solution to Hilbert's twelfth problem for real quadratic fields based on extending fundamental work of Gross-Zagier and of Kudla-Rapoport-Yang to a p-adic setting. That an eventual extension of Kudla's program to the p-adics could offer a key to Hilbert's twelfth problem is perhaps the most significant insight to emerge from my recent work with Jan Vonk.**
我的研究计划将围绕数论中的两个中心开放问题:第一,椭圆曲线上全局点的构造,目的是更好地理解Birch和Swinnerton-Dyer猜想;第二,希尔伯特第十二问题和显式类场论,其中实数二次场的类场的解析构造是最简单的典型特例。我打算建立在我对这些问题取得了重大进展在过去的五年里,最值得注意的是,(1)我的工作与维克多Rotger p进变形Chow组三对角周期的产品模块化的曲线和Kuga-Sato品种,导致在特定的证明新病例的桦树和Swinnerton-Dyer推测分析等级为零,对椭圆曲线在问扭环类字符的二次领域,(2)我最近与Jan Vonk在去年的合作,揭示了一个以前意想不到的实二次域的奇异模理论,它与经典的复乘法理论有着惊人的相似之处。这两部作品都为更好地理解我在2000年左右提出的Stark-Heegner点的构建提供了互补和有希望的途径,从那时起,我的主要研究重点就是对其进行支持。我和Victor的工作围绕着我们称之为“广义加藤类”的对象:椭圆曲线Selmer群中的全局类(在适当的数域上,实二次域的类域是一个特别诱人的特例),由特殊几何对象在Chow群或Shimura变种的更高Chow群中的p进变形引起。我们正在进行的工作旨在将这些类与Kummer理论的连接同态下的Stark-Heegner点的图像进行比较。虽然不足以建立Stark-Heegner点的全局性,但将它们与全局Selmer类联系起来是朝着这个方向迈出的决定性一步。从一个表面上完全不同的角度来看,我和Jan发现Stark-Heegner点可以在更广泛的(仍然是推测的)实二次域的复乘法理论框架中重新定义,其中亚纯模函数的作用是由我们所谓的“刚性亚纯环”发挥的,这似乎对未来的进展充满了希望。事实上,我们现在处理了一些令人信服的策略,使这幅图的某些部分成为无条件的,有可能导致希尔伯特第十二问题的令人满意的解决方案,这是基于将格罗斯-扎吉尔和Kudla-Rapoport-Yang的基本工作扩展到p进设置。库德拉的计划最终扩展到p-adics,可能为希尔伯特第十二个问题提供一把钥匙,这可能是我最近与扬·冯克(Jan Vonk)合作中最重要的见解
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Darmon, Henri其他文献
The Derived Hecke Algebra for Dihedral Weight One Forms
二面体权重一式的导出赫克代数
- DOI:
10.1307/mmj/20217221 - 发表时间:
2022 - 期刊:
- 影响因子:0.9
- 作者:
Darmon, Henri;Harris, Michael;Rotger, Victor;Venkatesh, Akshay - 通讯作者:
Venkatesh, Akshay
Generalised Heegner cycles and the complex Abel–Jacobi map
广义海格纳循环和复杂的阿贝尔雅可比图
- DOI:
10.1007/s00209-020-02603-8 - 发表时间:
2021 - 期刊:
- 影响因子:0.8
- 作者:
Bertolini, Massimo;Darmon, Henri;Lilienfeldt, David;Prasanna, Kartik - 通讯作者:
Prasanna, Kartik
Darmon, Henri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Darmon, Henri', 18)}}的其他基金
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
- 批准号:
RGPIN-2018-04062 - 财政年份:2022
- 资助金额:
$ 4.15万 - 项目类别:
Discovery Grants Program - Individual
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
- 批准号:
RGPIN-2018-04062 - 财政年份:2021
- 资助金额:
$ 4.15万 - 项目类别:
Discovery Grants Program - Individual
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
- 批准号:
RGPIN-2018-04062 - 财政年份:2020
- 资助金额:
$ 4.15万 - 项目类别:
Discovery Grants Program - Individual
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
- 批准号:
RGPIN-2018-04062 - 财政年份:2019
- 资助金额:
$ 4.15万 - 项目类别:
Discovery Grants Program - Individual
Euler Systems of Garrett-Rankin-Selberg type and Stark-Heegner points
Garrett-Rankin-Selberg 型和 Stark-Heegner 点的欧拉系统
- 批准号:
155499-2013 - 财政年份:2017
- 资助金额:
$ 4.15万 - 项目类别:
Discovery Grants Program - Individual
Euler Systems of Garrett-Rankin-Selberg type and Stark-Heegner points
Garrett-Rankin-Selberg 型和 Stark-Heegner 点的欧拉系统
- 批准号:
155499-2013 - 财政年份:2015
- 资助金额:
$ 4.15万 - 项目类别:
Discovery Grants Program - Individual
Euler Systems of Garrett-Rankin-Selberg type and Stark-Heegner points
Garrett-Rankin-Selberg 型和 Stark-Heegner 点的欧拉系统
- 批准号:
155499-2013 - 财政年份:2014
- 资助金额:
$ 4.15万 - 项目类别:
Discovery Grants Program - Individual
Euler Systems of Garrett-Rankin-Selberg type and Stark-Heegner points
Garrett-Rankin-Selberg 型和 Stark-Heegner 点的欧拉系统
- 批准号:
155499-2013 - 财政年份:2013
- 资助金额:
$ 4.15万 - 项目类别:
Discovery Grants Program - Individual
Stark-Heegner points and algebraic cycles
Stark-Heegner 点和代数环
- 批准号:
155499-2008 - 财政年份:2012
- 资助金额:
$ 4.15万 - 项目类别:
Discovery Grants Program - Individual
Stark-Heegner points and algebraic cycles
Stark-Heegner 点和代数环
- 批准号:
155499-2008 - 财政年份:2011
- 资助金额:
$ 4.15万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Class Ⅲ型过氧化物酶基因OsPOX8.1调控水稻抗褐飞虱的分子机制研究
- 批准号:32301918
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
拟南芥Class II TCP转录因子调控雌蕊顶端命运决定的分子机制
- 批准号:32300291
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于PAR1介导的MHC class I表达探讨血府逐瘀汤逆转肺癌免疫逃逸的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
无细胞生物合成S-腺苷甲硫氨酸自由基依赖的Class B甲基转移酶的系统构筑及应用研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
CAMKIV-MHC Class I-ER Stress途径对骨骼肌炎症及再生的调控及机制研究
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
柴芪益肝颗粒通过调控classⅢ/ⅠPI3K介导的自噬抑制HBx及其抗肝癌细胞凋亡效应治疗HBV相关肝癌的作用机制研究
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
时空 g-class Ornstein-Uhlenbeck 型过程的统计推断问题研究
- 批准号:11801355
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Class IIa 类乳酸菌细菌素 plantaricin YKX 在亚抑菌浓度下对脂环酸芽孢杆菌 QS 系统的调控机理研究
- 批准号:31801563
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Class I HDACs介导的DNA损伤修复和转录重编程在肝癌发生中的作用研究
- 批准号:81872019
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
Class III PI3K通过负反馈AngII/AT1信号通路调节血管内皮细胞衰老的分子机制研究
- 批准号:81771509
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Ignition and burn dynamics of fast ignition laser fusion under kilo-tesla-class magnetic field and its high efficiency
千特斯拉级磁场下快点火激光聚变点火燃烧动力学及其高效率
- 批准号:
23K03360 - 财政年份:2023
- 资助金额:
$ 4.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modular Cocycles, Explicit Class Field Theory, and Quantum Designs
模块化共循环、显式类场论和量子设计
- 批准号:
2302514 - 财政年份:2023
- 资助金额:
$ 4.15万 - 项目类别:
Continuing Grant
Development of low-cost 40T-class strong magnetic field generatior with high-purity copper wire
开发低成本40T级高纯铜线强磁场发生器
- 批准号:
23K17666 - 财政年份:2023
- 资助金额:
$ 4.15万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
NSF-GACR: Strong Field QED Plasma Physics at PetaWatt-Class Laser Facilities
NSF-GACR:拍瓦级激光设施的强场 QED 等离子体物理
- 批准号:
2206059 - 财政年份:2022
- 资助金额:
$ 4.15万 - 项目类别:
Continuing Grant
Education and Cognitive Functioning in Later Life: The Nation’s High School Class of 1972
晚年的教育和认知功能:1972 年全国高中班
- 批准号:
10513029 - 财政年份:2022
- 资助金额:
$ 4.15万 - 项目类别:
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
- 批准号:
RGPIN-2018-04062 - 财政年份:2022
- 资助金额:
$ 4.15万 - 项目类别:
Discovery Grants Program - Individual
Education and Cognitive Functioning in Later Life: The Nation’s High School Class of 1972
晚年的教育和认知功能:1972 年全国高中班
- 批准号:
10709556 - 财政年份:2022
- 资助金额:
$ 4.15万 - 项目类别:
Class number formula over global field of characteristic p and with coefficients.
特征 p 和系数的全局域上的类数公式。
- 批准号:
21K03186 - 财政年份:2021
- 资助金额:
$ 4.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
- 批准号:
RGPIN-2018-04062 - 财政年份:2021
- 资助金额:
$ 4.15万 - 项目类别:
Discovery Grants Program - Individual
Novel Cell Function Control Using Plasma Selective Transport and Radical Reaction Delay under Tesla-class Strong Magnetic Field
特斯拉级强磁场下利用等离子体选择性传输和自由基反应延迟控制新型细胞功能
- 批准号:
21K18613 - 财政年份:2021
- 资助金额:
$ 4.15万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)