Euler Systems of Garrett-Rankin-Selberg type and Stark-Heegner points

Garrett-Rankin-Selberg 型和 Stark-Heegner 点的欧拉系统

基本信息

  • 批准号:
    155499-2013
  • 负责人:
  • 金额:
    $ 4.08万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Around twelve years ago I discovered a completely explicit, but for now entirely conjectural, construction of global points on elliptic curves, which I called "Stark-Heegner points". In the simplest non-trivial setting, these points are expected to be defined over abelian extensions of real quadratic fields and would therefore contribute to our understanding of "explicit class field theory" for such fields. The main objective of this Discovery Grant proposal is to give an unconditional construction of the global cohomology classes in Selmer groups of elliptic curves that ought to arise from Stark-Heegner points via the connecting homomorphism of Kummer theory. The key tools in this construction are two new types of Euler systems arising from p-adic deformations of Gross-Kudla-Schoen diagonal cycles and Beilinson-Flach elements which I have been exploring with my collaborators (most importantly, Victor Rotger and Massimo Bertolini) since 2010. These two Euler systems are a natural generalisation of Kato's Euler system of Beilinson elements, and I refer to all three as "Euler systems of Garrett-Rankin-Selberg type" because of the key role played by the formulae of Garrett and Rankin-Selberg in relating them to special values of L-functions. The study of these Euler systems has already led my collaborators and me to new cases of the Birch and Swinnerton-Dyer conjecture in the spirit of the fundamental early results of Coates and Wiles. Most relevant to the project at hand is the finiteness of components of Mordell-Weil groups of modular elliptic curves over Q attached to characters of real quadratic fields when the associated L-function is non-zero at the central point. This new inroad into the Birch and Swinnerton-Dyer for abelian characters of real quadratic fields in "analytic rank zero" raises the hope that extensions of the method will lead to the desired information about the mysterious Stark-Heegner points, corresponding to cases of the Birch and Swinnerton-Dyer conjecture "in analytic rank one".
大约12年前,我发现了一个完全明确的,但现在完全是抽象的,椭圆曲线上的全局点的构造,我称之为“斯塔克-希格纳点”。在最简单的非平凡的设置,这些点预计将被定义在交换扩展的真实的二次字段,因此将有助于我们的理解“显式类场论”等领域。这个发现补助金提案的主要目标是给一个无条件的建设全球上同调类的塞尔默组的椭圆曲线,应该产生从斯塔克-希格纳点通过连接同态的库默理论。这个构造中的关键工具是两种新类型的欧拉系统,它们是由Gross-Kudla-Schoen对角环和Beilinson-Flach元素的p-adic变形产生的,我从2010年起就与我的合作者(最重要的是维克托·罗杰和马西莫·贝托里尼)一起探索。这两个欧拉系统是一个自然的推广加藤的欧拉系统的贝林森元素,我把所有三个作为“欧拉系统的加勒特-兰金-塞尔伯格型”,因为发挥关键作用的公式加勒特和兰金-塞尔伯格在有关他们的特殊价值的L-功能。对这些欧拉系统的研究,已经使我和我的合作者们,本着科茨和怀尔斯早期基本结果的精神,找到了伯奇猜想和斯温纳顿-戴尔猜想的新例子。最相关的项目在手是有限的组件的模椭圆曲线在Q附加到字符的真实的二次域时,相关的L-函数是非零的中心点。这一新的入侵到伯奇和斯温纳顿-戴尔的交换字符的真实的二次字段在“解析秩零”提出了希望,该方法的扩展将导致所需的信息神秘的斯塔克-海格纳点,相应的情况下,伯奇和斯温纳顿-戴尔猜想“在解析秩一”。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Darmon, Henri其他文献

The Derived Hecke Algebra for Dihedral Weight One Forms
二面体权重一式的导出赫克代数
  • DOI:
    10.1307/mmj/20217221
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Darmon, Henri;Harris, Michael;Rotger, Victor;Venkatesh, Akshay
  • 通讯作者:
    Venkatesh, Akshay
Generalised Heegner cycles and the complex Abel–Jacobi map
广义海格纳循环和复杂的阿贝尔雅可比图
  • DOI:
    10.1007/s00209-020-02603-8
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Bertolini, Massimo;Darmon, Henri;Lilienfeldt, David;Prasanna, Kartik
  • 通讯作者:
    Prasanna, Kartik

Darmon, Henri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Darmon, Henri', 18)}}的其他基金

Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2022
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2021
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2020
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2019
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2018
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Euler Systems of Garrett-Rankin-Selberg type and Stark-Heegner points
Garrett-Rankin-Selberg 型和 Stark-Heegner 点的欧拉系统
  • 批准号:
    155499-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Euler Systems of Garrett-Rankin-Selberg type and Stark-Heegner points
Garrett-Rankin-Selberg 型和 Stark-Heegner 点的欧拉系统
  • 批准号:
    155499-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Euler Systems of Garrett-Rankin-Selberg type and Stark-Heegner points
Garrett-Rankin-Selberg 型和 Stark-Heegner 点的欧拉系统
  • 批准号:
    155499-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Stark-Heegner points and algebraic cycles
Stark-Heegner 点和代数环
  • 批准号:
    155499-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Stark-Heegner points and algebraic cycles
Stark-Heegner 点和代数环
  • 批准号:
    155499-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
  • 批准号:
    31971398
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

BAMBOO - Build scAled Modular Bamboo-inspired Offshore sOlar systems
BAMBOO - 构建规模化模块化竹子式海上太阳能系统
  • 批准号:
    10109981
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    EU-Funded
FABB-HVDC (Future Aerospace power conversion Building Blocks for High Voltage DC electrical power systems)
FABB-HVDC(高压直流电力系统的未来航空航天电力转换构建模块)
  • 批准号:
    10079892
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Legacy Department of Trade & Industry
Digital chemistry and catalysis: redefining reactions in confined systems
数字化学和催化:重新定义受限系统中的反应
  • 批准号:
    FL220100059
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Australian Laureate Fellowships
Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
  • 批准号:
    DP240100506
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Projects
Linking Australia’s basement and cover mineral systems
连接澳大利亚的地下室和覆盖矿物系统
  • 批准号:
    DE240101283
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Early Career Researcher Award
Phase Averaged Deferred Correction for Multi-Timescale Systems
多时间尺度系统的相位平均延迟校正
  • 批准号:
    EP/Y032624/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Research Grant
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
  • 批准号:
    EP/Y035976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Research Grant
Directed and adaptive evolution of photosynthetic systems
光合系统的定向和适应性进化
  • 批准号:
    MR/Y011635/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Fellowship
Managing the Activity of Pollinators in Protected Cropping Systems (MAPP-CS)
管理保护性耕作系统中授粉媒介的活动 (MAPP-CS)
  • 批准号:
    BB/Z514366/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Research Grant
SONNETS: Scalability Oriented Novel Network of Event Triggered Systems
SONNETS:面向可扩展性的事件触发系统新型网络
  • 批准号:
    EP/X036006/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了