A new dynamical approach to black hole thermodynamics

黑洞热力学的新动力学方法

基本信息

  • 批准号:
    437861-2013
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

In the last decade or so, there has been major mathematical advances in how dynamical systems theory**connects with statistical mechanics. Most notably, there is the 1997 seminal paper by Hans Henrik Rugh that presents a new dynamical approach to thermodynamics in the microcanonical ensemble. In this approach, the temperature of a Hamiltonian dynamical system is computed as a time average of a particular function evaluated on the energy surface. The function itself is obtained from derivatives of the Hamiltonian. It has long been assumed that Hamiltonian dynamical systems exhibit some sort of ergodicity, where time-averages are viewed as being equivalent to space-averages over the microcanonical ensemble. However, until recently, an explicit mathematical formula for the temperature that reflected this was missing. The new formula not only provides an algorithm by which to compute the temperature but furnishes a long-sought connection between dynamical systems theory and the statistical mechanics of Hamiltonian systems. Moreover, the mathematical formalism has now been extended to other conserved quantities besides the energy (e.g. angular momentum). ****One of my objectives is to apply these new ideas and computational algorithms stemming from statistical mechanics to black hole (BH) thermodynamics. Black holes are ideally suited for this formalism as they are Hamiltonian dynamical systems described by three conserved quantities: mass (energy) M, charge Q and angular momentum J. Each of these conserved quantities can be expressed as a surface integral and has an associated thermodynamic variable that can be calculated as a time-average. In particular, the temperature of a BH would be computed as a time-average of a function evaluated from the Hamiltonian only. As with recent computations of the free energy, the temperature could be evaluated numerically in a gravitational collapse scenario. This would be a novel contribution to BH thermodynamics. **************
在过去十年左右的时间里,动力系统理论 ** 与统计力学的联系在数学上取得了重大进展。最值得注意的是1997年Hans Henrik Rugh的开创性论文,提出了微正则系综中热力学的新动力学方法。在这种方法中,哈密顿动力系统的温度被计算为在能量表面上评估的特定函数的时间平均值。函数本身是从哈密顿量的导数中得到的。长期以来,人们一直认为哈密顿动力系统表现出某种遍历性,其中时间平均被视为等同于微正则系综上的空间平均。然而,直到最近,一个明确的数学公式的温度,反映这是失踪。新公式不仅提供了一种计算温度的算法,而且提供了动力系统理论与汉密尔顿系统统计力学之间长期寻求的联系。此外,数学形式主义现在已经扩展到除了能量之外的其他守恒量(例如角动量)。**** 我的目标之一是将这些来自统计力学的新思想和计算算法应用于黑洞(BH)热力学。黑洞非常适合这种形式主义,因为它们是由三个守恒量描述的哈密顿动力学系统:质量(能量)M,电荷Q和角动量J。特别地,BH的温度将被计算为仅从哈密尔顿算子评估的函数的时间平均。与最近的自由能计算一样,在引力坍缩的情况下,温度可以用数值计算。这将是对BH热力学的一个新贡献。**************

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edery, Ariel其他文献

Edery, Ariel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edery, Ariel', 18)}}的其他基金

Implications of a Higgs field for the spontaneously broken pure R^2 gravity: magnetic monopoles, new interactions and dark radiation
希格斯场对自发破裂的纯 R^2 引力的影响:磁单极子、新相互作用和暗辐射
  • 批准号:
    SAPIN-2019-00034
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Implications of a Higgs field for the spontaneously broken pure R^2 gravity: magnetic monopoles, new interactions and dark radiation
希格斯场对自发破裂的纯 R^2 引力的影响:磁单极子、新相互作用和暗辐射
  • 批准号:
    SAPIN-2019-00034
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Implications of a Higgs field for the spontaneously broken pure R^2 gravity: magnetic monopoles, new interactions and dark radiation
希格斯场对自发破裂的纯 R^2 引力的影响:磁单极子、新相互作用和暗辐射
  • 批准号:
    SAPIN-2019-00034
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Subatomic Physics Envelope - Individual
A new dynamical approach to black hole thermodynamics
黑洞热力学的新动力学方法
  • 批准号:
    437861-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
A new dynamical approach to black hole thermodynamics
黑洞热力学的新动力学方法
  • 批准号:
    437861-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
A new dynamical approach to black hole thermodynamics
黑洞热力学的新动力学方法
  • 批准号:
    437861-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
A new dynamical approach to black hole thermodynamics
黑洞热力学的新动力学方法
  • 批准号:
    437861-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Conformal anomaly in the gravitationally coupled magnetic monopole and vacua effects under external conditions
外部条件下引力耦合磁单极子和真空效应的共形异常
  • 批准号:
    313970-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Conformal anomaly in the gravitationally coupled magnetic monopole and vacua effects under external conditions
外部条件下引力耦合磁单极子和真空效应的共形异常
  • 批准号:
    313970-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Conformal anomaly in the gravitationally coupled magnetic monopole and vacua effects under external conditions
外部条件下引力耦合磁单极子和真空效应的共形异常
  • 批准号:
    313970-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Subatomic Physics Envelope - Individual

相似海外基金

Dynamical-nonequilibrium simulations: an emerging approach to study time-dependent structural changes in proteins
动态非平衡模拟:研究蛋白质随时间变化的结构变化的新兴方法
  • 批准号:
    BB/X009831/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Fellowship
EAGER: Understanding complex wind-driven wildfire propagation patterns with a dynamical systems approach
EAGER:通过动力系统方法了解复杂的风驱动野火传播模式
  • 批准号:
    2330212
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
A dynamical systems theory approach to machine learning
机器学习的动力系统理论方法
  • 批准号:
    DP220100931
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Projects
Combining modeling and experiments to study the evolution of cells with altered ploidy
结合建模和实验来研究倍性改变的细胞的进化
  • 批准号:
    10555229
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
A Geometric Approach for Generalized Encrypted Control of Networked Dynamical Systems
网络动力系统广义加密控制的几何方法
  • 批准号:
    2112793
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Machine Learning Approach to Dynamical Model for Closed Loop Flow Control
闭环流量控制动态模型的机器学习方法
  • 批准号:
    552826-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
2019 OSA Optical Molecular Probes, Imaging and Drug Delivery; and Bio-Optics: Design and Application
2019 OSA 光学分子探针、成像和药物输送;
  • 批准号:
    9763256
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
Characterizing Resiliencies to Physical Stressors in Older Adults: A Dynamical Physiological Systems Approach
表征老年人对身体压力源的适应能力:动态生理系统方法
  • 批准号:
    10007987
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
Characterizing Resiliencies to Physical Stressors in Older Adults: A Dynamical Physiological Systems Approach
表征老年人对身体压力源的适应能力:动态生理系统方法
  • 批准号:
    10247045
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
Characterizing Resiliencies to Physical Stressors in Older Adults: A Dynamical Physiological Systems Approach
表征老年人对身体压力源的适应能力:动态生理系统方法
  • 批准号:
    10021533
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了