Semi-parametric multidimensional item response models for large-scale and operational testing

用于大规模和操作测试的半参数多维项目响应模型

基本信息

  • 批准号:
    RGPIN-2018-05357
  • 负责人:
  • 金额:
    $ 1.17万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

I develop, program, and evaluate innovative latent variable models. This work has broad applications across the social/health sciences, yet the main challenges are in statistics (primarily NSERC topic MS28).******As an example, large-scale/operational testing spans multiple disciplines (education, health, licensure, psychology) and often makes use of item response theory (IRT). IRT provides statistical tools to estimate the properties of items, construct tests, and score individual respondents. Such scores are often used for policy or high-stakes decisions.******In this context, psychometric models must often meet one or more demands: 1) Estimation with multiple groups and planned missing data designs; 2) Fast estimation with a long test and many respondents; 3) Feasibility with a computer adaptive test (CAT); and 4) Interpretability by stakeholders.******Such applications increasingly use multidimensional IRT (MIRT), which allows measurement of multiple substantive constructs. While there are several semiparametric and nonparametric IRT models, there are arguably no MIRT approaches that can both relax typical parametric assumptions and meet the above demands. In fact, many unidimensional semi/nonparametric approaches require more research to improve estimation speed, or use with multiple groups, missing data, and in a CAT.******This gap in modeling capacity is critical to address because use of a restrictive parametric model or ignoring multidimensionality can lead to poor estimates of item properties and individuals' scores. Therefore, the long-term objective of the proposed research program is integrate MIRT and semi/nonparametric modeling to develop new models that can meet the above demands.******Over the next five years, I will extend my work on monotonic polynomial (MP) models to the case of MIRT. I argue that MP-based models have interpretational advantages and can be estimated using maximum marginal likelihood to facilitate multiple groups and missing data. Much additional work is required to achieve the following short-term objectives:***1. The development and estimation of new MP-based MIRT models.***2. Enhancement of the estimation speed of MP-based models through use of metaheuristic optimization.***3. Development and testing of MP-based models for use in computer adaptive testing.******This research requires analytical/technical work (Objectives 1 and 3) and statistical computing (all Objectives). Real data and Monte Carlo simulations will compare new MP-based approaches versus extant nonparametric and parametric (M)IRT models.******Given a lack of alternatives, new semiparametric MIRT models are original and a potentially groundbreaking addition to current MIRT capabilities. Such models can enhance our knowledge of semi/nonparametric approaches and metaheuristics in general, improve the validity of large-scale/operational tests, and will serve as a benchmark for future developments.
我开发,编程和评估创新的潜变量模型。这项工作在社会/健康科学中有着广泛的应用,但主要的挑战是统计学(主要是NSERC主题MS 28)。例如,大规模/操作测试跨越多个学科(教育,健康,执照,心理学),并经常使用项目反应理论(IRT)。IRT提供了统计工具来估计项目的属性,构建测试,并对个体受访者进行评分。这些分数通常用于政策或高风险决策。在这种情况下,心理测量模型通常必须满足一个或多个要求:1)多组和计划缺失数据设计的估计; 2)长时间测试和许多受访者的快速估计; 3)计算机自适应测试(CAT)的可行性;以及4)利益相关者的可解释性。这些应用程序越来越多地使用多维IRT(MIRT),它允许测量多个实质性结构。虽然有几个半参数和非参数IRT模型,有争议的是没有MIRT方法,既可以放松典型的参数假设,并满足上述要求。事实上,许多一维半/非参数方法需要更多的研究来提高估计速度,或者用于多组,缺失数据和CAT。这种建模能力的差距是至关重要的,因为使用限制性参数模型或忽略多维性可能会导致项目属性和个人得分的估计不佳。因此,建议的研究计划的长期目标是将MIRT和半/非参数建模相结合,以开发能够满足上述需求的新模型。在接下来的五年里,我将把我在单调多项式(MP)模型上的工作扩展到MIRT的情况。我认为,MP为基础的模型具有解释优势,可以估计使用最大边际似然,以促进多组和缺失的数据。为实现下列短期目标,还需要开展更多的工作:*1.新的基于MP的MIRT模型的开发和估计。* 2.通过使用元启发式优化提高基于MP的模型的估计速度。* 3.开发和测试用于计算机自适应测试的基于MP的模型。**这项研究需要分析/技术工作(目标1和3)和统计计算(所有目标)。真实的数据和蒙特卡罗模拟将比较新的基于MP的方法与现有的非参数和参数(M)IRT模型。**由于缺乏替代方案,新的半参数MIRT模型是原创的,是对当前MIRT能力的一个潜在的突破性补充。这样的模型可以提高我们的知识的半/非参数的方法和metabolistics一般,提高大规模/操作测试的有效性,并将作为未来发展的基准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Falk, Carl其他文献

Comparison of different scoring methods based on latent variable models of the PHQ-9: an individual participant data meta-analysis.
  • DOI:
    10.1017/s0033291721000131
  • 发表时间:
    2021-02-22
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Fischer, Felix;Levis, Brooke;Falk, Carl;Sun, Ying;Ioannidis, John P. A.;Cuijpers, Pim;Shrier, Ian;Benedetti, Andrea;Thombs, Brett D.
  • 通讯作者:
    Thombs, Brett D.

Falk, Carl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Falk, Carl', 18)}}的其他基金

Semi-parametric multidimensional item response models for large-scale and operational testing
用于大规模和操作测试的半参数多维项目响应模型
  • 批准号:
    RGPIN-2018-05357
  • 财政年份:
    2022
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-parametric multidimensional item response models for large-scale and operational testing
用于大规模和操作测试的半参数多维项目响应模型
  • 批准号:
    RGPIN-2018-05357
  • 财政年份:
    2021
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-parametric multidimensional item response models for large-scale and operational testing
用于大规模和操作测试的半参数多维项目响应模型
  • 批准号:
    RGPIN-2018-05357
  • 财政年份:
    2020
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-parametric multidimensional item response models for large-scale and operational testing
用于大规模和操作测试的半参数多维项目响应模型
  • 批准号:
    RGPIN-2018-05357
  • 财政年份:
    2019
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-parametric multidimensional item response models for large-scale and operational testing
用于大规模和操作测试的半参数多维项目响应模型
  • 批准号:
    DGECR-2018-00083
  • 财政年份:
    2018
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

Semi-parametric multidimensional item response models for large-scale and operational testing
用于大规模和操作测试的半参数多维项目响应模型
  • 批准号:
    RGPIN-2018-05357
  • 财政年份:
    2022
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-parametric multidimensional item response models for large-scale and operational testing
用于大规模和操作测试的半参数多维项目响应模型
  • 批准号:
    RGPIN-2018-05357
  • 财政年份:
    2021
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-parametric multidimensional item response models for large-scale and operational testing
用于大规模和操作测试的半参数多维项目响应模型
  • 批准号:
    RGPIN-2018-05357
  • 财政年份:
    2020
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Technology to Realize the Full Potential of UHF MRI
充分发挥 UHF MRI 潜力的技术
  • 批准号:
    10549850
  • 财政年份:
    2019
  • 资助金额:
    $ 1.17万
  • 项目类别:
Semi-parametric multidimensional item response models for large-scale and operational testing
用于大规模和操作测试的半参数多维项目响应模型
  • 批准号:
    RGPIN-2018-05357
  • 财政年份:
    2019
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Technology to Realize the Full Potential of UHF MRI
充分发挥 UHF MRI 潜力的技术
  • 批准号:
    10376730
  • 财政年份:
    2019
  • 资助金额:
    $ 1.17万
  • 项目类别:
Semi-parametric multidimensional item response models for large-scale and operational testing
用于大规模和操作测试的半参数多维项目响应模型
  • 批准号:
    DGECR-2018-00083
  • 财政年份:
    2018
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Launch Supplement
Semi-parametric Statistical Methods for Predicting High-cost VA Patients Using High-Dimensional Covariates
使用高维协变量预测高成本 VA 患者的半参数统计方法
  • 批准号:
    10186525
  • 财政年份:
    2018
  • 资助金额:
    $ 1.17万
  • 项目类别:
Semi-parametric Statistical Methods for Predicting High-cost VA Patients Using High-Dimensional Covariates
使用高维协变量预测高成本 VA 患者的半参数统计方法
  • 批准号:
    9695867
  • 财政年份:
    2018
  • 资助金额:
    $ 1.17万
  • 项目类别:
Stochastic modeling of multidimensional particle properties with parametric copulas for the investigation of microstructure effects on the fractionation of fine particle system
使用参数联结函数对多维颗粒特性进行随机建模,用于研究微观结构对细颗粒系统分级的影响
  • 批准号:
    381447825
  • 财政年份:
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Priority Programmes
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了