Machine learning approaches to image analysis

图像分析的机器学习方法

基本信息

  • 批准号:
    RGPIN-2018-04962
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

My research program focusses on developing new computational approaches and analytical tools for healthcare policy and delivery, aligned with opportunities afforded by the intersection of machine learning (ML) with advances in computing power. This has included development and optimization of agent-based modeling frameworks to simulate large-scale infection spread and advances in image processing in mHealth contexts. The overall research focus is on better technology-based decision-making tools for policy and clinical practice. ******Image recognition and image analysis is a very rapidly growing form of artificial intelligence used in a myriad of social and business contexts, from auto-organizing images in social media to driverless vehicles recognizing obstacles in their path. ******Medical image processing is a specialization within the field, gaining attention in recent years for its anticipated game-changing applications in clinical decision support, diagnostic tools, precision medicine, and population health. Medical image processing is complex. It is widely recognized that the stakes are generally higher than in other image recognition application areas, with required levels of reliability lagging. Meaningful medical image analysis requires massive amounts of data, which are currently not available for many classes of medical images. The trend toward higher resolution and 3-dimensional medical images, combined with expectation of efficiency create new computational challenges. There is no single best algorithm applied to medical image processing, leaving the best methods as an open question. ******This research program will construct and optimize algorithmic pipelines for medical image analysis, leveraging the enormous progress in ML combined with analytical tools in image processing. The lack of labelled wound data creates challenge and complexity. The research will unfold within the constraints of off-the-shelf mobile devices with only built-in sensors and cameras. This introduces significantly higher variability in images than MRI or CT imaging, yet reflects patient-driven healthcare in which we collect, research, and share information on our mobile devices. ******The goal is to develop new approaches to image analysis that can offer decision, diagnostic, and telehealth tools to Canadian healthcare. To do so, the work will develop tools to crowdsource medical image data for wound images, addressing a current gap required for the research and providing a database for other researchers' use. The work will construct and optimize algorithms to accurately and efficiently identify features and classify them in medical images. Of specific interest are generative adversarial networks, a promising ML approach when training data are limited, and convolutional neural networks, one of several ML approaches modeled loosely on the human brain and well-adapted to image classification. **
我的研究计划专注于开发新的计算方法和分析工具,用于医疗保健政策和交付,与机器学习(ML)与计算能力进步的交集提供的机会保持一致。这包括开发和优化基于代理的建模框架,以模拟大规模感染传播,以及在mHealth环境中的图像处理方面的进展。总体研究的重点是为政策和临床实践提供更好的基于技术的决策工具。*图像识别和图像分析是一种发展非常迅速的人工智能形式,用于各种社交和商业环境,从社交媒体上的自动组织图像到无人驾驶车辆识别道路上的障碍物。*医学图像处理是该领域内的一个专业,近年来因其在临床决策支持、诊断工具、精确医学和人口健康方面的预期改变游戏规则的应用而受到关注。医学图像处理是一个复杂的问题。人们普遍认为,与其他图像识别应用领域相比,风险通常更高,所需的可靠性水平滞后。有意义的医学图像分析需要海量的数据,而目前许多类别的医学图像都无法获得这些数据。更高分辨率和3维医学图像的趋势,再加上对效率的期望,带来了新的计算挑战。医学图像处理没有单一的最优算法,最好的方法还是个未知数。*该研究计划将利用ML与图像处理中的分析工具相结合的巨大进步,构建和优化医学图像分析的算法管道。缺乏有标签的伤口数据带来了挑战和复杂性。这项研究将在只有内置传感器和摄像头的现成移动设备的限制下展开。这带来了比MRI或CT成像更高的图像变异性,但反映了我们在移动设备上收集、研究和共享信息的患者驱动的医疗保健。*目标是开发新的图像分析方法,为加拿大医疗保健提供决策、诊断和远程医疗工具。为此,这项工作将开发工具,将伤口图像的医学图像数据众包,解决目前研究所需的空白,并提供一个数据库供其他研究人员使用。这项工作将构建和优化算法,以准确有效地识别医学图像中的特征并对其进行分类。特别令人感兴趣的是生成性对抗性网络,这是一种在训练数据有限时很有前途的最大似然方法,以及卷积神经网络,它是几种在人脑上松散建模并很好地适应图像分类的最大似然方法之一。**

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Friesen, Marcia其他文献

Usability Testing of a Web-Based Empathy Training Portal: Mixed Methods Study.
  • DOI:
    10.2196/41222
  • 发表时间:
    2023-04-04
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Lobchuk, Michelle;Hoplock, Lisa;Harder, Nicole;Friesen, Marcia;Rempel, Julie;Bathi, Prachotan Reddy
  • 通讯作者:
    Bathi, Prachotan Reddy

Friesen, Marcia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Friesen, Marcia', 18)}}的其他基金

Machine learning approaches to image analysis
图像分析的机器学习方法
  • 批准号:
    RGPIN-2018-04962
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Machine learning approaches to image analysis
图像分析的机器学习方法
  • 批准号:
    RGPIN-2018-04962
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Developing algorithms that use individual mobility data to support tracking and contact tracing of SARS-CoV-2 causing COVID-19 and future pandemics
开发使用个人移动数据的算法来支持对导致 COVID-19 和未来大流行的 SARS-CoV-2 进行追踪和接触者追踪
  • 批准号:
    552682-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Alliance Grants
NSERC Chair in Design Engineering for sustainable development and enhanced design integration
NSERC 可持续发展和增强设计集成设计工程主席
  • 批准号:
    524240-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Chairs in Design Engineering - Research
Machine learning approaches to image analysis
图像分析的机器学习方法
  • 批准号:
    RGPIN-2018-04962
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Machine learning approaches to image analysis
图像分析的机器学习方法
  • 批准号:
    RGPIN-2018-04962
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC Chair in Design Engineering for sustainable development and enhanced design integration
NSERC 可持续发展和增强设计集成设计工程主席
  • 批准号:
    524240-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Chairs in Design Engineering - Research
NSERC Chair in Design Engineering for sustainable development and enhanced design integration
NSERC 可持续发展和增强设计集成设计工程主席
  • 批准号:
    524240-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Chairs in Design Engineering - Research
"Agent based modeling of urban-level, contact-based infectious disease spread"
“基于代理的城市级、基于接触的传染病传播模型”
  • 批准号:
    397751-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating image characterization of fish behaviour with water quality monitoring to support of fish health
将鱼类行为的图像特征与水质监测相结合以支持鱼类健康
  • 批准号:
    507248-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
  • 批准号:
    31971003
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
  • 批准号:
    61702207
  • 批准年份:
    2017
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
  • 批准号:
    61672236
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Automating data acquisition and data processing pipeline via artificial intelligence and machine learning approaches to allow at-home use of a novel breast cancer screening method employing bra-based elastography imaging.
通过人工智能和机器学习方法自动化数据采集和数据处理流程,以便在家使用基于胸罩的弹性成像成像的新型乳腺癌筛查方法。
  • 批准号:
    486956
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Operating Grants
Developing machine learning based approaches to weld residual stress problems
开发基于机器学习的方法来解决焊接残余应力问题
  • 批准号:
    2894296
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Studentship
Determining the ototoxic potential of COVID-19 therapeutics using machine learning and in vivo approaches
使用机器学习和体内方法确定 COVID-19 疗法的耳毒性潜力
  • 批准号:
    10732745
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Research Initiation Award: Uncovering and Extracting Biological Information from Nanopore Long-read Sequencing Data with Machine Learning and Mathematical Approaches
研究启动奖:利用机器学习和数学方法从纳米孔长读长测序数据中发现和提取生物信息
  • 批准号:
    2300445
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
CAREER: Combining Machine Learning and Physics-based Modeling Approaches for Accelerating Scientific Discovery
职业:结合机器学习和基于物理的建模方法来加速科学发现
  • 批准号:
    2239175
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
Developing novel machine learning approaches to studying cell development
开发新的机器学习方法来研究细胞发育
  • 批准号:
    2326879
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
Improving aerosol and spray process computation fluid dynamics models with machine learning approaches
利用机器学习方法改进气溶胶和喷雾过程计算流体动力学模型
  • 批准号:
    2881557
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Studentship
Target identification from multiomics data using systems biology and machine learning approaches
使用系统生物学和机器学习方法从多组学数据中识别目标
  • 批准号:
    BB/Y512734/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Training Grant
Cheminformatics and Machine Learning approaches for GPCR Computer Aided Drug Design
GPCR 计算机辅助药物设计的化学信息学和机器学习方法
  • 批准号:
    BB/X511778/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Training Grant
Constructing a Digital Twin for a self-correcting Scanning Transmission Electron Microscope using Machine Learning Approaches
使用机器学习方法构建自校正扫描透射电子显微镜的数字孪生
  • 批准号:
    2889721
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了