Artificial Intelligence for Truck Fleet Management**
卡车车队管理人工智能**
基本信息
- 批准号:533550-2018
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Today's transportation services are moving faster than ever, and companies are challenged to distribute their products more quickly and with increasingly competitive costs while maintaining safety on the road. With the emergence of data collection systems in trucks, tremendous opportunities for data intelligence are created, related to the creation of explanatory and predictive models for various events. The goal of this project is (1) to develop data-driven models to predict road accidents and infractions occurring in the truck fleet, and (2) to identify potential counter-measures to reduce the incidence of detrimental events. To build the predictive models, we pan to rely on Random Forests, a state- of-the-art classification and regression technique that has been successfully applied to many problems including in supply-chain modeling. To interpret the results and identify counter measures, we will use data mining techniques, for instance Association Rules. We expect this project to provide Groupe Robert with predictive models and possible actions to improve the **safety of its employees on the road, which will improve its competitiveness inside Canada.
今天的运输服务比以往任何时候都发展得更快,公司面临的挑战是在保持道路安全的同时,更快地配送产品,成本越来越有竞争力。随着卡车上数据收集系统的出现,为数据智能创造了巨大的机会,这与为各种事件创建解释和预测模型有关。该项目的目标是(1)开发数据驱动模型来预测卡车车队中发生的道路事故和违规行为,以及(2)确定潜在的应对措施,以减少有害事件的发生。为了建立预测模型,我们倾向于依赖随机森林,这是一种最先进的分类和回归技术,已经成功地应用于许多问题,包括供应链建模。为了解释结果并确定对策,我们将使用数据挖掘技术,例如关联规则。我们希望这个项目为Groupe Robert提供预测模型和可能的行动,以提高其员工在道路上的**安全,这将提高其在加拿大的竞争力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Glatard, Tristan其他文献
Modeling the Linux page cache for accurate simulation of data-intensive applications
对 Linux 页面缓存进行建模以准确模拟数据密集型应用程序
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Do, Hoang-Dung;Hayot-Sasson, Valerie;Ferreira da Silva, Rafael;Steele, Christopher;Casanova, Henri;Glatard, Tristan - 通讯作者:
Glatard, Tristan
A Virtual Imaging Platform for Multi-Modality Medical Image Simulation
- DOI:
10.1109/tmi.2012.2220154 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:10.6
- 作者:
Glatard, Tristan;Lartizien, Carole;Friboulet, Denis - 通讯作者:
Friboulet, Denis
Data and Tools Integration in the Canadian Open Neuroscience Platform.
- DOI:
10.1038/s41597-023-01946-1 - 发表时间:
2023-04-06 - 期刊:
- 影响因子:9.8
- 作者:
Poline, Jean-Baptiste;Das, Samir;Glatard, Tristan;Madjar, Cecile;Dickie, Erin W. W.;Lecours, Xavier;Beaudry, Thomas;Beck, Natacha;Behan, Brendan;Brown, Shawn T. T.;Bujold, David;Beauvais, Michael;Caron, Bryan;Czech, Candice;Dharsee, Moyez;Dugre, Mathieu;Evans, Ken;Gee, Tom;Ippoliti, Giulia;Kiar, Gregory;Knoppers, Bartha Maria;Kuehn, Tristan;Le, Diana;Lo, Derek;Mazaheri, Mandana;MacFarlane, Dave;Muja, Naser;O'Brien, Emmet A. A.;O'Callaghan, Liam;Paiva, Santiago;Park, Patrick;Quesnel, Darcy;Rabelais, Henri;Rioux, Pierre;Legault, Melanie;Tremblay-Mercier, Jennifer;Rotenberg, David;Stone, Jessica;Strauss, Ted;Zaytseva, Ksenia;Zhou, Joey;Duchesne, Simon;Khan, Ali R. R.;Hill, Sean;Evans, Alan C. C. - 通讯作者:
Evans, Alan C. C.
A Service-Oriented Architecture enabling dynamic service grouping for optimizing distributed workflow execution
- DOI:
10.1016/j.future.2008.02.011 - 发表时间:
2008-07-01 - 期刊:
- 影响因子:7.5
- 作者:
Glatard, Tristan;Montagnat, Johan;Lingrand, Diane - 通讯作者:
Lingrand, Diane
Flexible and efficient workflow deployment of data-intensive applications on grids with MOTEUR
- DOI:
10.1177/1094342008096067 - 发表时间:
2008-08-01 - 期刊:
- 影响因子:3.1
- 作者:
Glatard, Tristan;Montagnat, Johan;Pennec, Xavier - 通讯作者:
Pennec, Xavier
Glatard, Tristan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Glatard, Tristan', 18)}}的其他基金
Numerical stability in data science
数据科学中的数值稳定性
- 批准号:
RGPIN-2022-04669 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Big Data Infrastructures for Neuroinformatics
神经信息学大数据基础设施
- 批准号:
CRC-2017-00325 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Canada Research Chairs
Big Data Infrastructures For Neuroinformatics
神经信息学大数据基础设施
- 批准号:
CRC-2017-00325 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Canada Research Chairs
Big Data platforms for science automation
用于科学自动化的大数据平台
- 批准号:
RGPIN-2017-06640 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Big Data Infrastructures for Neuroinformatics
神经信息学大数据基础设施
- 批准号:
1000232010-2017 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Canada Research Chairs
Big Data platforms for science automation
用于科学自动化的大数据平台
- 批准号:
RGPIN-2017-06640 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Big Data platforms for science automation
用于科学自动化的大数据平台
- 批准号:
RGPIN-2017-06640 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Big Data Infrastructures for Neuroinformatics
神经信息学大数据基础设施
- 批准号:
1000232010-2017 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Canada Research Chairs
Big Data platforms for science automation
用于科学自动化的大数据平台
- 批准号:
RGPIN-2017-06640 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Big Data Infrastructures for Neuroinformatics
神经信息学大数据基础设施
- 批准号:
1000232010-2017 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Canada Research Chairs
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
EU-Funded
University of West London and Turing Intelligence Technology Limited KTP (23-24 R3)
西伦敦大学与图灵智能科技有限公司KTP (23-24 R3)
- 批准号:
10082602 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Knowledge Transfer Network
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Projects
Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
- 批准号:
DP240100506 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Projects
Mathematical Foundations of Intelligence: An "Erlangen Programme" for AI
智能的数学基础:人工智能的“埃尔兰根计划”
- 批准号:
EP/Y028872/1 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Research Grant
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Fellowship
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
- 批准号:
2338512 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant