Towards Self Driving Processes: Leveraging the Data Revolution
迈向自动驾驶流程:利用数据革命
基本信息
- 批准号:RGPIN-2017-05794
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is widely believed that we are at the dawn of the fourth industrial revolution that will bring a level of automation process industry has never seen before. This optimism is spurred by the rather serendipitous confluence of ubiquitous cyber-physical systems, easy access to large volumes of data, expanding computing power and major theoretical breakthroughs in data analytics. Our group's long term vision is to create self-driving processes similar to self driving cars. A truly self-driving autonomous process will operate with minimal to no human interference by generating necessary process inputs, by learning its dynamics, by automatically tuning its controller, and by detecting, isolating and predicting various faults. This proposal seeks to develop a set of algorithms and computational tools to bring this vision of automation to the process industry.******Industrial processes are characterized by complex nonlinear and stochastic dynamics, multi-rate noisy measurements and large interconnected units. This proposal addresses each of these process characteristics to build an over arching systematic approach for self driving processes. In pursuit of our vision, this project is divided into three sub-projects: 1) Model Monitoring and Active Data Generation: We will develop algorithms to actively monitor the performance of a model of the process. This will be done without injecting external inputs and therefore preventing performance degradation. Once a model is determined to be poor an automatic algorithm will generate a new set of sufficiently informative data for model re-identificaiton. 2) Adaptive Modelling and Control: Using the generated data, new models will be identified online and embedded in a control strategy. This approach will take two forms depending on the available information. When a model structure is available a maximum likelihood approach in conjunction with simulation methods and a nonlinear model predictive control strategy will be used. When a model structure is unavailable approaches such as deep reinforcement learning will be used to design the controller. 3) Fault Detection and Isolation: Process faults will be identified using simulation based methods and machine learning algorithms on large scale data sets. In particular known faults will be identified by using model based algorithms and unknown faults will be identified by learning and extracting features from large dimensional data sets. These algorithms will be tested on real processes with the help of our industrial partners. ******This proposal is novel due to its unique unifying approach for processes with rather generic characteristic features. To the best of our knowledge, this is the first ever attempt to build a self driving process with the features described above. Realizing this vision will benefit Canadian industries by making them highly efficient and by giving them a global competitive advantage.
人们普遍认为,我们正处于第四次工业革命的黎明,这将带来一个前所未有的自动化过程工业水平。这种乐观情绪受到无处不在的网络物理系统的偶然融合,易于访问大量数据,不断扩展的计算能力和数据分析的重大理论突破的刺激。我们集团的长期愿景是创建类似于自动驾驶汽车的自动驾驶流程。一个真正的自动驾驶过程将通过生成必要的过程输入,通过学习其动态,通过自动调整其控制器以及通过检测,隔离和预测各种故障,在最小甚至没有人为干扰的情况下运行。 该提案旨在开发一套算法和计算工具,将自动化的愿景带到流程工业中。工业过程的特点是复杂的非线性和随机动态,多速率噪声测量和大型互联单元。该提案针对这些过程特征中的每一个,为自驱动过程建立一个全面系统的方法。为了实现我们的愿景,该项目分为三个子项目:1)模型监控和主动数据生成:我们将开发算法来主动监控过程模型的性能。这将在不注入外部输入的情况下完成,从而防止性能下降。一旦模型被确定为较差,自动算法将生成一组新的足够信息的数据用于模型重新识别。2)自适应建模和控制:使用生成的数据,新模型将被在线识别并嵌入控制策略中。这一办法将根据现有资料采取两种形式。当模型结构可用时,将使用最大似然法结合模拟方法和非线性模型预测控制策略。当模型结构不可用时,将使用深度强化学习等方法来设计控制器。3)故障检测和隔离:将使用基于模拟的方法和机器学习算法在大规模数据集上识别过程故障。特别是已知的故障将通过使用基于模型的算法来识别,未知的故障将通过学习和从大维度数据集中提取特征来识别。这些算法将在我们的工业合作伙伴的帮助下在真实的流程上进行测试。** 该提案是新颖的,因为它具有独特的统一方法,适用于具有相当普遍特征的过程。据我们所知,这是有史以来第一次尝试构建具有上述功能的自动驾驶过程。实现这一愿景将使加拿大的工业受益,使它们具有高效率和全球竞争优势。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gopaluni, Bhushan其他文献
A Novel Approach to Alarm Causality Analysis Using Active Dynamic Transfer Entropy
- DOI:
10.1021/acs.iecr.9b06262 - 发表时间:
2020-05-06 - 期刊:
- 影响因子:4.2
- 作者:
Luo, Yi;Gopaluni, Bhushan;Zhu, Qun-Xiong - 通讯作者:
Zhu, Qun-Xiong
Targeted deep learning classification and feature extraction for clinical diagnosis.
- DOI:
10.1016/j.isci.2023.108006 - 发表时间:
2023-11-17 - 期刊:
- 影响因子:5.8
- 作者:
Tsai, Yiting;Nanthakumar, Vikash;Mohammadi, Saeed;Baldwin, Susan A.;Gopaluni, Bhushan;Geng, Fei - 通讯作者:
Geng, Fei
Gopaluni, Bhushan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gopaluni, Bhushan', 18)}}的其他基金
Scalable Analytics for Extracting Control Insights from Historical Process Data: with Applications in the Pulp and Paper Industry
用于从历史过程数据中提取控制见解的可扩展分析:在纸浆和造纸行业中的应用
- 批准号:
531114-2018 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative Research and Development Grants
Towards Self Driving Processes: Leveraging the Data Revolution
迈向自动驾驶流程:利用数据革命
- 批准号:
RGPIN-2017-05794 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Towards Self Driving Processes: Leveraging the Data Revolution
迈向自动驾驶流程:利用数据革命
- 批准号:
RGPIN-2017-05794 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Scalable Analytics for Extracting Control Insights from Historical Process Data: with Applications in the Pulp and Paper Industry
用于从历史过程数据中提取控制见解的可扩展分析:在纸浆和造纸行业中的应用
- 批准号:
531114-2018 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative Research and Development Grants
Deep Learning Enabled Maintenance Free Control
深度学习支持免维护控制
- 批准号:
536418-2018 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative Research and Development Grants
Scalable Analytics for Extracting Control Insights from Historical Process Data: with Applications in the Pulp and Paper Industry
用于从历史过程数据中提取控制见解的可扩展分析:在纸浆和造纸行业中的应用
- 批准号:
531114-2018 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative Research and Development Grants
Deep Learning Enabled Maintenance Free Control
深度学习支持免维护控制
- 批准号:
536418-2018 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative Research and Development Grants
Towards Self Driving Processes: Leveraging the Data Revolution
迈向自动驾驶流程:利用数据革命
- 批准号:
RGPIN-2017-05794 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Process analytics to predict arc loss in an electric arc furnace**
预测电弧炉电弧损耗的过程分析**
- 批准号:
536692-2018 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Engage Grants Program
Towards Self Driving Processes: Leveraging the Data Revolution
迈向自动驾驶流程:利用数据革命
- 批准号:
RGPIN-2017-05794 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
- 批准号:82371813
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
- 批准号:32302161
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Self-shrinkers的刚性及相关问题
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于Self-peptide和Fe5C2构建的高敏感MR分子探针对肿瘤血管的MR靶向成像研究
- 批准号:81501521
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
平均曲率流中非紧Self-shrinkers的结构
- 批准号:11301190
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
2维伪欧氏空间下平均曲率流中Self-shrinker问题的研究
- 批准号:11126152
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
- 批准号:21171046
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
成束蛋白Fascin1在肺癌"self-seeding"过程中的作用及机制研究
- 批准号:81001041
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
工业用腈水合酶全新蛋白质翻译后调节体系self-subunit swapping的研究
- 批准号:31070711
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Near-infrared GaN quantum cascade laser for the next-generation self-driving car
用于下一代自动驾驶汽车的近红外GaN量子级联激光器
- 批准号:
23K20955 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
AUTOTRACT - Development of interoperable, low-cost, 'self-driving' software platform for tractor manufacturers
AUTOTRACT - 为拖拉机制造商开发可互操作、低成本的“自动驾驶”软件平台
- 批准号:
10057982 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative R&D
Conference: Workshop to Build a Vision and Strategy for Creating a National Network of Academic Cloud and Self-Driving Labs
会议:构建创建全国学术云和自动驾驶实验室网络的愿景和战略的研讨会
- 批准号:
2335891 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Self-Driving Continuous Fuzzing
协作研究:SaTC:核心:小型:自驱动连续模糊测试
- 批准号:
2247880 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Self-driving laboratories for autonomous exploration of protein sequence space
用于自主探索蛋白质序列空间的自动驾驶实验室
- 批准号:
10717598 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative Research: NSF Workshop on Automated, Programmable and Self Driving Labs
合作研究:NSF 自动化、可编程和自动驾驶实验室研讨会
- 批准号:
2335910 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Collaborative Research: NSF Workshop on Automated, Programmable and Self Driving Labs
合作研究:NSF 自动化、可编程和自动驾驶实验室研讨会
- 批准号:
2335909 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Self-Driving Continuous Fuzzing
协作研究:SaTC:核心:小型:自驱动连续模糊测试
- 批准号:
2247881 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Disrupting the UK inertial sensor supply chain to increase resilience and safety for self-driving vehicles
颠覆英国惯性传感器供应链,提高自动驾驶车辆的弹性和安全性
- 批准号:
10065170 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
BEIS-Funded Programmes