Process analytics to predict arc loss in an electric arc furnace**
预测电弧炉电弧损耗的过程分析**
基本信息
- 批准号:536692-2018
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Smelting is an energy intensive operation in metallurgical processes where ore is refined into base metal in units such as an electric arc furnace that can draw up to 80MW of power. Disruptions to the furnace operation, such as loss of the electric arc, can result in expensive costs associated with lost production time and reduced energy efficiency. In this project we aim to combine process analytics, machine learning and large amounts of historical data to develop an inferential sensor that can predict loss of the furnace arc. Specifically, our goal is to study patterns in upstream metallurgical and electrical variables in order to develop a supervised learning classification model that can inform operators when there is a high probability of the onset of arc loss. Operators can then use this information to take corrective actions and perform predictive maintenance to ensure that stable operation and constant production is maintained.
冶炼是冶金过程中的能源密集型操作,其中矿石在电弧炉等装置中被精炼成贱金属,电弧炉的功率可达80兆瓦。炉操作的中断,例如电弧的损失,可能导致与损失的生产时间和降低的能量效率相关的昂贵成本。在这个项目中,我们的目标是结合联合收割机过程分析,机器学习和大量的历史数据,开发一种推理传感器,可以预测电弧的损失。具体来说,我们的目标是研究上游冶金和电气变量的模式,以开发一个监督学习分类模型,可以通知操作员时,有一个很高的发生电弧损失的可能性。然后,操作员可以使用这些信息采取纠正措施并执行预测性维护,以确保保持稳定的操作和恒定的生产。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gopaluni, Bhushan其他文献
A Novel Approach to Alarm Causality Analysis Using Active Dynamic Transfer Entropy
- DOI:
10.1021/acs.iecr.9b06262 - 发表时间:
2020-05-06 - 期刊:
- 影响因子:4.2
- 作者:
Luo, Yi;Gopaluni, Bhushan;Zhu, Qun-Xiong - 通讯作者:
Zhu, Qun-Xiong
Targeted deep learning classification and feature extraction for clinical diagnosis.
- DOI:
10.1016/j.isci.2023.108006 - 发表时间:
2023-11-17 - 期刊:
- 影响因子:5.8
- 作者:
Tsai, Yiting;Nanthakumar, Vikash;Mohammadi, Saeed;Baldwin, Susan A.;Gopaluni, Bhushan;Geng, Fei - 通讯作者:
Geng, Fei
Gopaluni, Bhushan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gopaluni, Bhushan', 18)}}的其他基金
Scalable Analytics for Extracting Control Insights from Historical Process Data: with Applications in the Pulp and Paper Industry
用于从历史过程数据中提取控制见解的可扩展分析:在纸浆和造纸行业中的应用
- 批准号:
531114-2018 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Towards Self Driving Processes: Leveraging the Data Revolution
迈向自动驾驶流程:利用数据革命
- 批准号:
RGPIN-2017-05794 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Towards Self Driving Processes: Leveraging the Data Revolution
迈向自动驾驶流程:利用数据革命
- 批准号:
RGPIN-2017-05794 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Scalable Analytics for Extracting Control Insights from Historical Process Data: with Applications in the Pulp and Paper Industry
用于从历史过程数据中提取控制见解的可扩展分析:在纸浆和造纸行业中的应用
- 批准号:
531114-2018 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Deep Learning Enabled Maintenance Free Control
深度学习支持免维护控制
- 批准号:
536418-2018 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Scalable Analytics for Extracting Control Insights from Historical Process Data: with Applications in the Pulp and Paper Industry
用于从历史过程数据中提取控制见解的可扩展分析:在纸浆和造纸行业中的应用
- 批准号:
531114-2018 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Deep Learning Enabled Maintenance Free Control
深度学习支持免维护控制
- 批准号:
536418-2018 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Towards Self Driving Processes: Leveraging the Data Revolution
迈向自动驾驶流程:利用数据革命
- 批准号:
RGPIN-2017-05794 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Towards Self Driving Processes: Leveraging the Data Revolution
迈向自动驾驶流程:利用数据革命
- 批准号:
RGPIN-2017-05794 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Towards Self Driving Processes: Leveraging the Data Revolution
迈向自动驾驶流程:利用数据革命
- 批准号:
RGPIN-2017-05794 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
PREDICT (Precision Medicine, Education, Data Informatics and Community Translation) Institute
PREDICT(精准医学、教育、数据信息学和社区翻译)研究所
- 批准号:
10772765 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Predictive Analytics and Clinical Decision Support to Improve PrEP Prescribing in Community Health Centers (PrEDICT)
预测分析和临床决策支持,以改善社区健康中心的 PrEP 处方 (PrEDICT)
- 批准号:
10699074 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Biomarkers and subphenotypes predictive of clinical outcomes in patients with COVID-19 related acute respiratory distress syndrome
预测 COVID-19 相关急性呼吸窘迫综合征患者临床结果的生物标志物和亚表型
- 批准号:
10535955 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Biological Basis of Phenotypes and Clinical Outcomes in Biliary Atresia
胆道闭锁表型和临床结果的生物学基础
- 批准号:
10824147 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
PIPP Phase I: Real-time Analytics to Monitor and Predict Emerging Plant Disease
PIPP 第一阶段:实时分析监测和预测新发植物病害
- 批准号:
2200038 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Using Routine Care Electronic Medical Record Data and Artificial Intelligence to Develop a Passive Digital Marker to Predict Postoperative Delirium
使用常规护理电子病历数据和人工智能开发被动数字标记来预测术后谵妄
- 批准号:
10449523 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
PANDA-MSD: Predictive Analytics via Networked Distributed Algorithms for Multi-System Diseases
PANDA-MSD:通过网络分布式算法对多系统疾病进行预测分析
- 批准号:
10368562 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
PANDA-MSD: Predictive Analytics via Networked Distributed Algorithms for Multi-System Diseases
PANDA-MSD:通过网络分布式算法对多系统疾病进行预测分析
- 批准号:
10677539 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Extracting RDoC Constructs from EHR through Natural Language Processing to Predict Suicide in Youth
通过自然语言处理从 EHR 中提取 RDoC 结构来预测青少年自杀
- 批准号:
10689244 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别: