Efficient Robust Global Registration of 3D Data
高效、稳健的 3D 数据全局配准
基本信息
- 批准号:RGPIN-2018-04175
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Registration is the process of transforming two or more partially overlapping data sets to align***in the same coordinate reference frame. When the data are 3D point clouds, as acquired with range***sensors such as LiDAR or stereovision cameras, then the problem is one of surface registration,***which is an early processing step enabling a large variety of important emerging applications, such as autonomous driving and Simultaneous Localization and Mapping, automated scene reconstruction and object modelling, and 3D***object retrieval and recognition.******When an initial estimate of the transformation between data sets exists, then the problem is one***of refinement, known as local registration. Effective solutions to local registration have been known***for some time, prominently the Iterative Closest Point Algorithm and its many variants. More recently, the community has turned its attention to the more general and difficult problem of global registration, wherein no initial estimate of the transformation exists. Most approaches to global registration follow a probabilistic search and are heuristic. While an approach has recently been proposed, solutions that are both guaranteed and efficient remain elusive, especially when the region of overlap between the data sets is cluttered or occluded, or the degree of overlap is small.******The proposed research will build upon and significantly extend my previous work into global registration. My students and I will in the short-term extend our investigation of Virtual Interest Points to address global registration under non-rigid transformations. A second short-term goal will consider the impact of applying calculated boundaries to the transformations used to seed the local minima search process in Potential Well Space Embedding. A long term goal of the research is to develop more effective metrics and methods to evaluate the quality of a registration result. A second long term goal is to explore bridges between heuristic suboptimal and branch-and-bound optimal registration.******The advancement of these global registration techniques promise to enable an important set of applications, such as the use of realtime embedded range sensors for flexible indoor localization, the advent of which will be as transformative to indoor navigation as GPS has been in outdoor environments. Another related application is that of self-driving automobiles, which continually monitor their environments with range sensors, and for which effective global registration will enable enhanced navigation, recognition, and collision avoidance capabilities. The students in this research program will gain expertise in the general field of Computer Vision, specifically global registration. Their work will advance knowledge in this area, and the unique skills that they acquire will generate opportunities and job creation to the benefit of Canadian industry in this vital and exciting field.
配准是转换两个或多个部分重叠的数据集以在同一坐标参考系中对齐 * 的过程。当数据是3D点云时,如使用距离 * 传感器(如LiDAR或立体视觉相机)获取的,那么问题就是表面配准,* 这是一个早期处理步骤,可以实现各种重要的新兴应用,如自动驾驶和同步定位和地图,自动场景重建和对象建模,以及3D* 对象检索和识别。当数据集之间的转换的初始估计存在时,那么问题是细化的一个 *,称为局部配准。局部配准的有效解决方案已经有一段时间了,主要是迭代最近点算法及其许多变体。最近,国际社会已将注意力转向全球登记这一更普遍和困难的问题,在这一问题上,不存在对变化的初步估计。大多数全局配准方法遵循概率搜索并且是启发式的。虽然最近已经提出了一种方法,但保证和有效的解决方案仍然难以捉摸,特别是当数据集之间的重叠区域混乱或遮挡,或者重叠程度很小时。拟议的研究将建立在我以前的工作基础上,并将其显著扩展到全球注册。我和我的学生将在短期内扩展我们对虚拟兴趣点的研究,以解决非刚性变换下的全局配准问题。第二个短期目标将考虑将计算边界应用于用于在势阱空间嵌入中播种局部最小值搜索过程的变换的影响。研究的长期目标是开发更有效的指标和方法来评估配准结果的质量。第二个长期目标是探索启发式次优配准和分支定界最优配准之间的桥梁。这些全球注册技术的进步,使一组重要的应用,如使用实时嵌入式范围传感器的灵活的室内定位,它的出现将是室内导航的GPS在室外环境中的变革。另一个相关的应用是自动驾驶汽车,自动驾驶汽车通过距离传感器持续监测环境,有效的全局注册将增强导航、识别和防撞能力。该研究项目的学生将获得计算机视觉一般领域的专业知识,特别是全球注册。他们的工作将促进这一领域的知识,他们获得的独特技能将为加拿大工业在这一重要和令人兴奋的领域创造机会和就业机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Greenspan, Michael其他文献
Patient Non-adherence and Cancellations Are Higher for Screening Colonoscopy Compared with Surveillance Colonoscopy
- DOI:
10.1007/s10620-015-3664-2 - 发表时间:
2015-10-01 - 期刊:
- 影响因子:3.1
- 作者:
Greenspan, Michael;Chehl, Navdeep;Melson, Joshua - 通讯作者:
Melson, Joshua
Real-time Object Recognition in Sparse Range Images Using Error Surface Embedding
- DOI:
10.1007/s11263-009-0276-3 - 发表时间:
2010-09-01 - 期刊:
- 影响因子:19.5
- 作者:
Shang, Limin;Greenspan, Michael - 通讯作者:
Greenspan, Michael
Point Cloud Registration Using Virtual Interest Points from Macaulay's Resultant of Quadric Surfaces
- DOI:
10.1007/s10851-020-01013-z - 发表时间:
2021-01-07 - 期刊:
- 影响因子:2
- 作者:
Ahmed, Mirza Tahir;Ziauddin, Sheikh;Greenspan, Michael - 通讯作者:
Greenspan, Michael
Scene Dynamics Estimation for Parameter Adjustment of Gaussian Mixture Models
高斯混合模型参数调整的场景动态估计
- DOI:
10.1109/lsp.2014.2326916 - 发表时间:
2014-05 - 期刊:
- 影响因子:3.9
- 作者:
Zhang, Rui;Gong, Weiguo;Grzeda, Victor;Yaworski, Andrew;Greenspan, Michael - 通讯作者:
Greenspan, Michael
Local shape descriptor selection for object recognition in range data
- DOI:
10.1016/j.cviu.2010.11.021 - 发表时间:
2011-05-01 - 期刊:
- 影响因子:4.5
- 作者:
Taati, Babak;Greenspan, Michael - 通讯作者:
Greenspan, Michael
Greenspan, Michael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Greenspan, Michael', 18)}}的其他基金
Efficient Robust Global Registration of 3D Data
高效、稳健的 3D 数据全局配准
- 批准号:
RGPIN-2018-04175 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Urban Scene Analytics for Road Safety
道路安全城市场景分析
- 批准号:
560312-2020 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Alliance Grants
Efficient Robust Global Registration of 3D Data
高效、稳健的 3D 数据全局配准
- 批准号:
RGPIN-2018-04175 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Object recognition in bin picking
垃圾箱拣选中的物体识别
- 批准号:
532448-2018 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Collaborative Research and Development Grants
Efficient Robust Global Registration of 3D Data
高效、稳健的 3D 数据全局配准
- 批准号:
RGPIN-2018-04175 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Efficient Robust Global Registration of 3D Data
高效、稳健的 3D 数据全局配准
- 批准号:
RGPIN-2018-04175 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Object recognition in bin picking
垃圾箱拣选中的物体识别
- 批准号:
532448-2018 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Collaborative Research and Development Grants
Object recognition in bin picking**
垃圾箱拣选中的物体识别**
- 批准号:
532448-2018 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Collaborative Research and Development Grants
Procam transparent correspondence
Procam透明对应
- 批准号:
506235-2016 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Collaborative Research and Development Grants
Meet to discuss computer vision for industrial automation project
开会讨论工业自动化项目的计算机视觉
- 批准号:
529895-2018 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Connect Grants Level 1
相似国自然基金
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
- 批准号:60085001
- 批准年份:2000
- 资助金额:14.0 万元
- 项目类别:专项基金项目
ROBUST语音识别方法的研究
- 批准号:69075008
- 批准年份:1990
- 资助金额:3.5 万元
- 项目类别:面上项目
改进型ROBUST序贯检测技术
- 批准号:68671030
- 批准年份:1986
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Efficient Robust Global Registration of 3D Data
高效、稳健的 3D 数据全局配准
- 批准号:
RGPIN-2018-04175 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Efficient Robust Global Registration of 3D Data
高效、稳健的 3D 数据全局配准
- 批准号:
RGPIN-2018-04175 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Robust strategies to achieve sustainable savannas under rapid global change
在全球快速变化下实现可持续稀树草原的稳健战略
- 批准号:
DE210100492 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Early Career Researcher Award
Efficient Robust Global Registration of 3D Data
高效、稳健的 3D 数据全局配准
- 批准号:
RGPIN-2018-04175 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Migration planning of global production networks – methodological support for the determination of robust migration paths and risk-efficient enablers of change
全球生产网络的迁移规划——为确定稳健的迁移路径和风险有效的变革推动因素提供方法支持
- 批准号:
418891325 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Research Grants
Efficient Robust Global Registration of 3D Data
高效、稳健的 3D 数据全局配准
- 批准号:
RGPIN-2018-04175 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Development of chimeric read amplification into a robust method for profiling targets of specific microRNAs and global amplification of all microRNA:mRNA pairings transcriptome-wide
将嵌合读取扩增发展为一种强大的方法,用于分析特定 microRNA 的靶标以及所有 microRNA:mRNA 配对转录组范围的全局扩增
- 批准号:
10326159 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Global-Robust Trajectory Optimization against Spacecraft System Failures and Anomalies
针对航天器系统故障和异常的全局鲁棒轨迹优化
- 批准号:
18J02128 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Robust earthquake source scaling and seismic efficiency for intermediate depth and deep earthquakes at global and regional scales
全球和区域尺度中深度和深层地震的稳健震源标度和地震效率
- 批准号:
1521534 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
New theory and methods for robust global optimisation: modern decision-making under uncertain conditions
稳健全局优化的新理论和新方法:不确定条件下的现代决策
- 批准号:
DP120100467 - 财政年份:2012
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Projects