Urban Scene Analytics for Road Safety
道路安全城市场景分析
基本信息
- 批准号:560312-2020
- 负责人:
- 金额:$ 9.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will develop a capability to automatically recognize safety critical events and conditions within a stream of image and video data, acquired from a network of mobile dash cam and stationary street cam sensors, with the aim of improving road safety. The data source will be a large, distributed network of cameras, comprising both mobile dash cams deployed on Geotab-enabled vehicles, and stationary street cams such as are available from municipal infrastructure. Processing of this data will rely on state-of-the-art Machine Learning methods, primarily variations of Deep Convolutional Neural Networks. The outcome of the project will be the development of advanced deep learning based methods to recognize events and characteristics in urban scene data which are related to road safety, such as an unsafe pedestrian crossing or high-volume intersections, or degraded municipal infrastructure such as burned-out street lights or potholes. The project outcome will include a thorough characterization of the effectiveness of these methods, through the design of a set of structured experiments. Further, these methods will be implemented in a standardized development environment, to facilitate transfer to Geotab for subsequent commercialization, and to demonstrate the applicability to the City of Kingston for municipal infrastructure monitoring. The project impact will be to advance the use of machine learning methods to detect safety-critical events and scenarios within images and video of urban scenes. The project has the potential to improve the safety of urban environments, both through the development of advanced driver and/or pedestrian alerts as safety-critical events and conditions are recognized in real-time, as well as through informing the design criteria of roads and associated infrastructure as the root causes of certain events are revealed. Further tangible impact of the project will be novel product offerings from Geotab, as well as identifying opportunities for the City of Kingston to apply these techniques for infrastructure asset tracking.
该项目将开发一种自动识别从移动的仪表盘摄像头和固定街道摄像头传感器网络获取的图像和视频数据流中的安全关键事件和条件的能力,以提高道路安全。数据源将是一个大型的分布式摄像头网络,包括部署在支持Geotab的车辆上的移动的仪表盘摄像头,以及市政基础设施中的固定街道摄像头。这些数据的处理将依赖于最先进的机器学习方法,主要是深度卷积神经网络的变体。 该项目的成果将是开发基于深度学习的先进方法,以识别与道路安全相关的城市场景数据中的事件和特征,例如不安全的人行横道或高流量十字路口,或退化的市政基础设施,例如烧毁的路灯或坑洞。该项目的成果将包括通过设计一套结构化的实验,对这些方法的有效性进行全面的表征。此外,这些方法将在一个标准化的开发环境中实施,以便于转移到Geotab,随后进行商业化,并证明其适用于金斯顿市的市政基础设施监测。 该项目的影响将是推进机器学习方法的使用,以检测城市场景图像和视频中的安全关键事件和场景。该项目有可能改善城市环境的安全,既可以通过开发先进的驾驶员和/或行人警报,实时识别安全关键事件和条件,也可以通过告知道路和相关基础设施的设计标准,揭示某些事件的根本原因。该项目的进一步实际影响将是Geotab提供的新产品,以及为金斯顿市确定将这些技术应用于基础设施资产跟踪的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Greenspan, Michael其他文献
Patient Non-adherence and Cancellations Are Higher for Screening Colonoscopy Compared with Surveillance Colonoscopy
- DOI:
10.1007/s10620-015-3664-2 - 发表时间:
2015-10-01 - 期刊:
- 影响因子:3.1
- 作者:
Greenspan, Michael;Chehl, Navdeep;Melson, Joshua - 通讯作者:
Melson, Joshua
Real-time Object Recognition in Sparse Range Images Using Error Surface Embedding
- DOI:
10.1007/s11263-009-0276-3 - 发表时间:
2010-09-01 - 期刊:
- 影响因子:19.5
- 作者:
Shang, Limin;Greenspan, Michael - 通讯作者:
Greenspan, Michael
Point Cloud Registration Using Virtual Interest Points from Macaulay's Resultant of Quadric Surfaces
- DOI:
10.1007/s10851-020-01013-z - 发表时间:
2021-01-07 - 期刊:
- 影响因子:2
- 作者:
Ahmed, Mirza Tahir;Ziauddin, Sheikh;Greenspan, Michael - 通讯作者:
Greenspan, Michael
Scene Dynamics Estimation for Parameter Adjustment of Gaussian Mixture Models
高斯混合模型参数调整的场景动态估计
- DOI:
10.1109/lsp.2014.2326916 - 发表时间:
2014-05 - 期刊:
- 影响因子:3.9
- 作者:
Zhang, Rui;Gong, Weiguo;Grzeda, Victor;Yaworski, Andrew;Greenspan, Michael - 通讯作者:
Greenspan, Michael
Local shape descriptor selection for object recognition in range data
- DOI:
10.1016/j.cviu.2010.11.021 - 发表时间:
2011-05-01 - 期刊:
- 影响因子:4.5
- 作者:
Taati, Babak;Greenspan, Michael - 通讯作者:
Greenspan, Michael
Greenspan, Michael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Greenspan, Michael', 18)}}的其他基金
Efficient Robust Global Registration of 3D Data
高效、稳健的 3D 数据全局配准
- 批准号:
RGPIN-2018-04175 - 财政年份:2022
- 资助金额:
$ 9.62万 - 项目类别:
Discovery Grants Program - Individual
Efficient Robust Global Registration of 3D Data
高效、稳健的 3D 数据全局配准
- 批准号:
RGPIN-2018-04175 - 财政年份:2021
- 资助金额:
$ 9.62万 - 项目类别:
Discovery Grants Program - Individual
Object recognition in bin picking
垃圾箱拣选中的物体识别
- 批准号:
532448-2018 - 财政年份:2020
- 资助金额:
$ 9.62万 - 项目类别:
Collaborative Research and Development Grants
Efficient Robust Global Registration of 3D Data
高效、稳健的 3D 数据全局配准
- 批准号:
RGPIN-2018-04175 - 财政年份:2020
- 资助金额:
$ 9.62万 - 项目类别:
Discovery Grants Program - Individual
Efficient Robust Global Registration of 3D Data
高效、稳健的 3D 数据全局配准
- 批准号:
RGPIN-2018-04175 - 财政年份:2019
- 资助金额:
$ 9.62万 - 项目类别:
Discovery Grants Program - Individual
Object recognition in bin picking
垃圾箱拣选中的物体识别
- 批准号:
532448-2018 - 财政年份:2019
- 资助金额:
$ 9.62万 - 项目类别:
Collaborative Research and Development Grants
Object recognition in bin picking**
垃圾箱拣选中的物体识别**
- 批准号:
532448-2018 - 财政年份:2018
- 资助金额:
$ 9.62万 - 项目类别:
Collaborative Research and Development Grants
Procam transparent correspondence
Procam透明对应
- 批准号:
506235-2016 - 财政年份:2018
- 资助金额:
$ 9.62万 - 项目类别:
Collaborative Research and Development Grants
Efficient Robust Global Registration of 3D Data
高效、稳健的 3D 数据全局配准
- 批准号:
RGPIN-2018-04175 - 财政年份:2018
- 资助金额:
$ 9.62万 - 项目类别:
Discovery Grants Program - Individual
Meet to discuss computer vision for industrial automation project
开会讨论工业自动化项目的计算机视觉
- 批准号:
529895-2018 - 财政年份:2018
- 资助金额:
$ 9.62万 - 项目类别:
Connect Grants Level 1
相似海外基金
Scene Processing With Machine Learnable and Semantically Parametrized Representations RENEWAL
使用机器学习和语义参数化表示进行场景处理 RENEWAL
- 批准号:
MR/Y033884/1 - 财政年份:2025
- 资助金额:
$ 9.62万 - 项目类别:
Fellowship
CAREER: Digitize and Simulate the Large Physical World via Knowledge-Grounded Scene Representation
职业:通过基于知识的场景表示对大型物理世界进行数字化和模拟
- 批准号:
2340254 - 财政年份:2024
- 资助金额:
$ 9.62万 - 项目类别:
Continuing Grant
Towards a Smart Digital Forensic Advisor to Support First Responders with At-Scene Triage of Digital Evidence Across Crime Types
打造智能数字取证顾问,支持急救人员对不同犯罪类型的数字证据进行现场分类
- 批准号:
ES/Y010647/1 - 财政年份:2024
- 资助金额:
$ 9.62万 - 项目类别:
Research Grant
MyUnderwaterWorld: Intelligent Underwater Scene Representation
MyUnderwaterWorld:智能水下场景表示
- 批准号:
EP/Y002490/1 - 财政年份:2024
- 资助金额:
$ 9.62万 - 项目类别:
Research Grant
CAREER: Efficient coding of visual,structural, and semantic scene information
职业:视觉、结构和语义场景信息的高效编码
- 批准号:
2240815 - 财政年份:2023
- 资助金额:
$ 9.62万 - 项目类别:
Continuing Grant
Automated semantic scene content extraction for Security, Safety, Construction and Maintenance
用于安保、安全、施工和维护的自动语义场景内容提取
- 批准号:
10063636 - 财政年份:2023
- 资助金额:
$ 9.62万 - 项目类别:
Collaborative R&D
Augmenting the On-scene Medic (ATOM): Development of a head-mounted display application to reduce prehospital pediatric medication errors
增强现场医生 (ATOM):开发头戴式显示器应用程序以减少院前儿科用药错误
- 批准号:
10627347 - 财政年份:2023
- 资助金额:
$ 9.62万 - 项目类别:
African SCENe: Sustainable Community Energy Networks
非洲 SCENe:可持续社区能源网络
- 批准号:
10048752 - 财政年份:2023
- 资助金额:
$ 9.62万 - 项目类别:
Feasibility Studies
CAREER: Active Scene Understanding By and For Robot Manipulation
职业:机器人操作的活动场景理解
- 批准号:
2348698 - 财政年份:2023
- 资助金额:
$ 9.62万 - 项目类别:
Continuing Grant
Functional spatial segregation in auditory scene analysis
听觉场景分析中的功能空间隔离
- 批准号:
10659664 - 财政年份:2023
- 资助金额:
$ 9.62万 - 项目类别: