Equivariant Symplectic and Algebraic Geometry
等变辛和代数几何
基本信息
- 批准号:1000229278-2013
- 负责人:
- 金额:$ 3.64万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Canada Research Chairs
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many problems in Mathematics involve solving a system of equations. Algebraic Geometry is precisely the study of the solutions to systems of algebraic equations, and is therefore a core area of Mathematics. Algebraic geometry also has applications in quantum computing, cryptography, and image and signal processing. Combinatorial geometry includes the study of polytopes, which are generalizations of figures in plane geometry such as trapezoids and parallelograms. The convex geometry of polytopes has applications in optimization theory. The objective of the proposed research is to develop the new theory of Okounkov bodies, which connects these research areas.
数学中的许多问题都涉及到解方程组。代数几何正是研究代数方程组的解决方案,因此是数学的核心领域。代数几何在量子计算、密码学、图像和信号处理中也有应用。组合几何学包括多面体的研究,多面体是平面几何中图形的推广,如长方体和平行四边形。多面体的凸几何在最优化理论中有应用。拟议的研究的目标是发展新的理论的Okounkov机构,连接这些研究领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harada, Megumi其他文献
Wall-Crossing for Newton–Okounkov Bodies and the Tropical Grassmannian
牛顿奥孔科夫体和热带格拉斯曼体的越墙
- DOI:
10.1093/imrn/rnaa230 - 发表时间:
2020 - 期刊:
- 影响因子:1
- 作者:
Escobar, Laura;Harada, Megumi - 通讯作者:
Harada, Megumi
Upper Triangular Linear Relations on Mmultiplicities and the Stanley-Stembridge Conjecture
M重数上的上三角线性关系和斯坦利-斯坦布里奇猜想
- DOI:
10.37236/10489 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Harada, Megumi;Precup, Martha - 通讯作者:
Precup, Martha
Successful Treatment of Nephrotic Syndrome Due to Collapsing Focal Segmental Glomerulosclerosis Accompanied by Acute Interstitial Nephritis.
- DOI:
10.2169/internalmedicine.8258-21 - 发表时间:
2022-06-15 - 期刊:
- 影响因子:1.2
- 作者:
Shima, Hisato;Doi, Toshio;Okamoto, Takuya;Higashiguchi, Yusuke;Harada, Megumi;Inoue, Tomoko;Tashiro, Manabu;Wariishi, Seiichiro;Takamatsu, Norimichi;Kawahara, Kazuhiko;Okada, Kazuyoshi;Minakuchi, Jun - 通讯作者:
Minakuchi, Jun
Toward Permutation Bases in the Equivariant Cohomology Rings of Regular Semisimple Hessenberg Varieties
正则半单Hessenberg簇等变上同调环中的排列基
- DOI:
10.1007/s44007-021-00016-5 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Harada, Megumi;Precup, Martha;Tymoczko, Julianna - 通讯作者:
Tymoczko, Julianna
Harada, Megumi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harada, Megumi', 18)}}的其他基金
Equivariant Symplectic and Algebraic Geometry
等变辛和代数几何
- 批准号:
CRC-2018-00218 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Canada Research Chairs
Equivariant symplectic and algebraic geometry of flag and spherical varieties
旗形簇和球簇的等变辛几何和代数几何
- 批准号:
RGPIN-2019-06567 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Equivariant Symplectic And Algebraic Geometry
等变辛和代数几何
- 批准号:
CRC-2018-00218 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Canada Research Chairs
Equivariant symplectic and algebraic geometry of flag and spherical varieties
旗形簇和球簇的等变辛几何和代数几何
- 批准号:
RGPIN-2019-06567 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Equivariant Symplectic and Algebraic Geometry
等变辛和代数几何
- 批准号:
CRC-2018-00218 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Canada Research Chairs
Equivariant symplectic and algebraic geometry of flag and spherical varieties
旗形簇和球簇的等变辛几何和代数几何
- 批准号:
RGPIN-2019-06567 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Equivariant symplectic and algebraic geometry of flag and spherical varieties
旗形簇和球簇的等变辛几何和代数几何
- 批准号:
RGPIN-2019-06567 - 财政年份:2019
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Equivariant Symplectic and Algebraic Geometry
等变辛和代数几何
- 批准号:
CRC-2018-00218 - 财政年份:2019
- 资助金额:
$ 3.64万 - 项目类别:
Canada Research Chairs
Equivariant Symplectic and Algebraic Geometry
等变辛和代数几何
- 批准号:
CRC-2018-00218 - 财政年份:2018
- 资助金额:
$ 3.64万 - 项目类别:
Canada Research Chairs
Equivariant and combinatorial techniques in algebraic and symplectic geometry
代数和辛几何中的等变和组合技术
- 批准号:
326749-2012 - 财政年份:2018
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Equivariant symplectic and algebraic geometry of flag and spherical varieties
旗形簇和球簇的等变辛几何和代数几何
- 批准号:
RGPIN-2019-06567 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Equivariant Symplectic and Algebraic Geometry
等变辛和代数几何
- 批准号:
CRC-2018-00218 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Canada Research Chairs
Equivariant Symplectic And Algebraic Geometry
等变辛和代数几何
- 批准号:
CRC-2018-00218 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Canada Research Chairs
Equivariant symplectic and algebraic geometry of flag and spherical varieties
旗形簇和球簇的等变辛几何和代数几何
- 批准号:
RGPIN-2019-06567 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Equivariant Symplectic and Algebraic Geometry
等变辛和代数几何
- 批准号:
CRC-2018-00218 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Canada Research Chairs
Equivariant symplectic and algebraic geometry of flag and spherical varieties
旗形簇和球簇的等变辛几何和代数几何
- 批准号:
RGPIN-2019-06567 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Equivariant symplectic and algebraic geometry of flag and spherical varieties
旗形簇和球簇的等变辛几何和代数几何
- 批准号:
RGPIN-2019-06567 - 财政年份:2019
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Equivariant Symplectic and Algebraic Geometry
等变辛和代数几何
- 批准号:
CRC-2018-00218 - 财政年份:2019
- 资助金额:
$ 3.64万 - 项目类别:
Canada Research Chairs
Equivariant Symplectic and Algebraic Geometry
等变辛和代数几何
- 批准号:
CRC-2018-00218 - 财政年份:2018
- 资助金额:
$ 3.64万 - 项目类别:
Canada Research Chairs
Equivariant and combinatorial techniques in algebraic and symplectic geometry
代数和辛几何中的等变和组合技术
- 批准号:
326749-2012 - 财政年份:2018
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




