Equivariant Symplectic And Algebraic Geometry
等变辛和代数几何
基本信息
- 批准号:CRC-2018-00218
- 负责人:
- 金额:$ 7.29万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Canada Research Chairs
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many problems in Mathematics involve systems of equations. Algebraic Geometry is the study of the solutions to such equations, and is a core area of Mathematics. Algebraic geometry has applications in quantum computing, cryptography, and signal processing. Combinatorial geometry includes the study of polytopes, which generalize plane figures such as trapezoids, and has applications in optimization theory. Combinatorics involves the study of graphs, which have applications in network theory and biology. The objective of the proposed research is to develop (1) the theory of Okounkov bodies and (2) the theory of Hessenberg varieties, both of which connect these research areas.
数学中的许多问题涉及方程组。代数几何是研究这些方程的解决方案,是数学的核心领域。代数几何在量子计算、密码学和信号处理中有应用。组合几何学包括多面体的研究,它概括了平面图形,如多面体,并在优化理论中有应用。组合数学涉及对图的研究,它在网络理论和生物学中有应用。建议的研究的目标是发展(1)Okounkov体的理论和(2)Hessenberg簇的理论,两者都连接这些研究领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harada, Megumi其他文献
Wall-Crossing for Newton–Okounkov Bodies and the Tropical Grassmannian
牛顿奥孔科夫体和热带格拉斯曼体的越墙
- DOI:
10.1093/imrn/rnaa230 - 发表时间:
2020 - 期刊:
- 影响因子:1
- 作者:
Escobar, Laura;Harada, Megumi - 通讯作者:
Harada, Megumi
Upper Triangular Linear Relations on Mmultiplicities and the Stanley-Stembridge Conjecture
M重数上的上三角线性关系和斯坦利-斯坦布里奇猜想
- DOI:
10.37236/10489 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Harada, Megumi;Precup, Martha - 通讯作者:
Precup, Martha
Successful Treatment of Nephrotic Syndrome Due to Collapsing Focal Segmental Glomerulosclerosis Accompanied by Acute Interstitial Nephritis.
- DOI:
10.2169/internalmedicine.8258-21 - 发表时间:
2022-06-15 - 期刊:
- 影响因子:1.2
- 作者:
Shima, Hisato;Doi, Toshio;Okamoto, Takuya;Higashiguchi, Yusuke;Harada, Megumi;Inoue, Tomoko;Tashiro, Manabu;Wariishi, Seiichiro;Takamatsu, Norimichi;Kawahara, Kazuhiko;Okada, Kazuyoshi;Minakuchi, Jun - 通讯作者:
Minakuchi, Jun
Toward Permutation Bases in the Equivariant Cohomology Rings of Regular Semisimple Hessenberg Varieties
正则半单Hessenberg簇等变上同调环中的排列基
- DOI:
10.1007/s44007-021-00016-5 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Harada, Megumi;Precup, Martha;Tymoczko, Julianna - 通讯作者:
Tymoczko, Julianna
Harada, Megumi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harada, Megumi', 18)}}的其他基金
Equivariant symplectic and algebraic geometry of flag and spherical varieties
旗形簇和球簇的等变辛几何和代数几何
- 批准号:
RGPIN-2019-06567 - 财政年份:2022
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Equivariant Symplectic and Algebraic Geometry
等变辛和代数几何
- 批准号:
CRC-2018-00218 - 财政年份:2022
- 资助金额:
$ 7.29万 - 项目类别:
Canada Research Chairs
Equivariant symplectic and algebraic geometry of flag and spherical varieties
旗形簇和球簇的等变辛几何和代数几何
- 批准号:
RGPIN-2019-06567 - 财政年份:2021
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Equivariant Symplectic and Algebraic Geometry
等变辛和代数几何
- 批准号:
CRC-2018-00218 - 财政年份:2020
- 资助金额:
$ 7.29万 - 项目类别:
Canada Research Chairs
Equivariant symplectic and algebraic geometry of flag and spherical varieties
旗形簇和球簇的等变辛几何和代数几何
- 批准号:
RGPIN-2019-06567 - 财政年份:2020
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Equivariant symplectic and algebraic geometry of flag and spherical varieties
旗形簇和球簇的等变辛几何和代数几何
- 批准号:
RGPIN-2019-06567 - 财政年份:2019
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Equivariant Symplectic and Algebraic Geometry
等变辛和代数几何
- 批准号:
CRC-2018-00218 - 财政年份:2019
- 资助金额:
$ 7.29万 - 项目类别:
Canada Research Chairs
Equivariant Symplectic and Algebraic Geometry
等变辛和代数几何
- 批准号:
CRC-2018-00218 - 财政年份:2018
- 资助金额:
$ 7.29万 - 项目类别:
Canada Research Chairs
Equivariant Symplectic and Algebraic Geometry
等变辛和代数几何
- 批准号:
1000229278-2013 - 财政年份:2018
- 资助金额:
$ 7.29万 - 项目类别:
Canada Research Chairs
Equivariant and combinatorial techniques in algebraic and symplectic geometry
代数和辛几何中的等变和组合技术
- 批准号:
326749-2012 - 财政年份:2018
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Equivariant Symplectic and Algebraic Geometry
等变辛和代数几何
- 批准号:
CRC-2018-00218 - 财政年份:2022
- 资助金额:
$ 7.29万 - 项目类别:
Canada Research Chairs
Equivariant symplectic and algebraic geometry of flag and spherical varieties
旗形簇和球簇的等变辛几何和代数几何
- 批准号:
RGPIN-2019-06567 - 财政年份:2022
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Equivariant symplectic and algebraic geometry of flag and spherical varieties
旗形簇和球簇的等变辛几何和代数几何
- 批准号:
RGPIN-2019-06567 - 财政年份:2021
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Equivariant Symplectic and Algebraic Geometry
等变辛和代数几何
- 批准号:
CRC-2018-00218 - 财政年份:2020
- 资助金额:
$ 7.29万 - 项目类别:
Canada Research Chairs
Equivariant symplectic and algebraic geometry of flag and spherical varieties
旗形簇和球簇的等变辛几何和代数几何
- 批准号:
RGPIN-2019-06567 - 财政年份:2020
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Equivariant symplectic and algebraic geometry of flag and spherical varieties
旗形簇和球簇的等变辛几何和代数几何
- 批准号:
RGPIN-2019-06567 - 财政年份:2019
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Equivariant Symplectic and Algebraic Geometry
等变辛和代数几何
- 批准号:
CRC-2018-00218 - 财政年份:2019
- 资助金额:
$ 7.29万 - 项目类别:
Canada Research Chairs
Equivariant Symplectic and Algebraic Geometry
等变辛和代数几何
- 批准号:
CRC-2018-00218 - 财政年份:2018
- 资助金额:
$ 7.29万 - 项目类别:
Canada Research Chairs
Equivariant Symplectic and Algebraic Geometry
等变辛和代数几何
- 批准号:
1000229278-2013 - 财政年份:2018
- 资助金额:
$ 7.29万 - 项目类别:
Canada Research Chairs
Equivariant and combinatorial techniques in algebraic and symplectic geometry
代数和辛几何中的等变和组合技术
- 批准号:
326749-2012 - 财政年份:2018
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




