Content-aware encoding of cloud gaming
云游戏的内容感知编码
基本信息
- 批准号:523933-2018
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cloud gaming is a large, and rapidly growing multibillion-dollar industry. Cloud gaming enables users to play**games on thin clients such as tablets, smartphones, and smart TVs without worrying about processing power,**memory size, graphics card capabilities, and installing/updating software. Thus, high-quality games can be**played virtually on any device, anywhere, without the need for high-end gaming consoles. This significantly**increases the potential number of users and thus the market size. Cloud gaming essentially moves the game**logic and rendering from the user's device to the cloud. As a result, the entire game runs on the cloud and the**rendered scenes are then streamed to users in real-time. Rendering and streaming from the cloud, however,**substantially increase the required bandwidth to serve gaming clients. Moreover, given the large-scale and**heterogeneity of clients, numerous streams need to be created and served from the cloud in real time. This**creates a major challenge for cloud gaming providers. Thus, minimizing the resources needed to render,**encode, customize, and deliver gaming streams to millions of users is an important problem. This problem gets**even more complex when we consider advanced and next-generation games such as 3D and immersive**augmented/virtual reality (AR/VR) games, which are getting popular. Our industrial partner, AMD (Advanced**Micro Devices), is a major stakeholder in the gaming industry. AMD provides advanced hardware to gaming**providers, such as the AMD Radeon Sky Series Graphics Cards, as well as software tools, such as the AMD**RapidFire Software Development Kit (SDK. The RapidFire SDK facilitates the control of the video encoder on**the Radeon Sky graphics cards to concurrently encode multiple streams at different quality configurations (e.g.,**resolutions and frame rates). An important problem for AMD is to develop methods to adaptively control the**various parameters of the on-board video encoder to minimize the required network bandwidth while**delivering the highest possible quality to heterogeneous clients, which is the focus of this project.
云游戏是一个规模庞大、增长迅速、价值数十亿美元的产业。云游戏使用户可以在平板电脑、智能手机和智能电视等瘦客户端上玩**游戏,而无需担心处理能力、**内存大小、显卡能力和安装/更新软件。因此,高质量的游戏可以**在任何设备上、任何地方玩,而不需要高端游戏机。这大大增加了潜在的用户数量,从而扩大了市场规模。云游戏本质上是将游戏**的逻辑和渲染从用户的设备转移到云上。结果,整个游戏在云上运行,渲染的场景然后实时传输给用户。然而,来自云的渲染和流媒体**大大增加了为游戏客户端提供服务所需的带宽。此外,考虑到客户端的大规模和**异构性,需要从云中实时创建和提供大量流。这**给云游戏提供商带来了重大挑战。因此,将渲染、**编码、定制和向数百万用户交付游戏流所需的资源最小化是一个重要的问题。当我们考虑正在流行的高级和下一代游戏,如3D和沉浸式增强/虚拟现实(AR/VR)游戏时,这个问题就变得**更加复杂。我们的工业合作伙伴AMD(Advanced**Micro Devices)是游戏行业的主要利益相关者。AMD为游戏**提供商提供先进的硬件,例如AMD Radeon Sky系列显卡,以及软件工具,例如AMD**RapidFire软件开发工具包(SDK。RapidFire SDK便于控制**Radeon Sky显卡上的视频编码器,以便以不同的质量配置(例如,**分辨率和帧速率)同时编码多个流。对于AMD来说,一个重要的问题是开发方法来自适应地控制车载视频编码器的**各种参数,以最大限度地减少所需的网络带宽,同时**向不同的客户提供尽可能高的质量,这是本项目的重点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hefeeda, Mohamed其他文献
Energy-Efficient Protocol for Deterministic and Probabilistic Coverage in Sensor Networks
- DOI:
10.1109/tpds.2009.112 - 发表时间:
2010-05-01 - 期刊:
- 影响因子:5.3
- 作者:
Hefeeda, Mohamed;Ahmadi, Hossein - 通讯作者:
Ahmadi, Hossein
Crowdsourced Multi-View Live Video Streaming using Cloud Computing
- DOI:
10.1109/access.2017.2720189 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:3.9
- 作者:
Bilal, Kashif;Erbad, Aiman;Hefeeda, Mohamed - 通讯作者:
Hefeeda, Mohamed
Traffic Modeling and Proportional Partial Caching for Peer-to-Peer Systems
- DOI:
10.1109/tnet.2008.918081 - 发表时间:
2008-12-01 - 期刊:
- 影响因子:3.7
- 作者:
Hefeeda, Mohamed;Saleh, Osama - 通讯作者:
Saleh, Osama
Hefeeda, Mohamed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hefeeda, Mohamed', 18)}}的其他基金
Adaptive Delivery and Analysis of Mixed Reality Content
混合现实内容的自适应交付和分析
- 批准号:
RGPIN-2018-05048 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Adaptive Delivery and Analysis of Mixed Reality Content
混合现实内容的自适应交付和分析
- 批准号:
RGPIN-2018-05048 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Adaptive Delivery and Analysis of Mixed Reality Content
混合现实内容的自适应交付和分析
- 批准号:
RGPIN-2018-05048 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Adaptive Delivery and Analysis of Mixed Reality Content
混合现实内容的自适应交付和分析
- 批准号:
RGPIN-2018-05048 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Adaptive Delivery and Analysis of Mixed Reality Content
混合现实内容的自适应交付和分析
- 批准号:
RGPIN-2018-05048 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Cloud-supported Adaptive Streaming of Videos
云支持的自适应视频流
- 批准号:
479254-2015 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Strategic Projects - Group
Mobile 3D multimedia streaming
移动 3D 多媒体流
- 批准号:
313083-2011 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Generating virtual reality content from regular 2D videos
从常规 2D 视频生成虚拟现实内容
- 批准号:
514441-2017 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
相似国自然基金
动态无线传感器网络弹性化容错组网技术与传输机制研究
- 批准号:61001096
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于计算和存储感知的运动估计算法与结构研究
- 批准号:60803013
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Traversing the Gray Zone with Scale-aware Turbulence Closures
通过尺度感知的湍流闭合穿越灰色区域
- 批准号:
2337399 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
- 批准号:
2340089 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Situation-aware Multi-sided Personalised Analytics in Spatial Crowdsourcing
空间众包中的态势感知多边个性化分析
- 批准号:
DP240100356 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Projects
CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
- 批准号:
EP/X040828/1 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Research Grant
A Knowledge-aware Multi-tasks-based Disease Network Construction on Biomedical Literature
基于生物医学文献的知识感知多任务疾病网络构建
- 批准号:
24K15097 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Studentship
CAREER: Psychology-aware Human-in-the-Loop Cyber-Physical-System (HCPS): Methodologies, Algorithms, and Deployment
职业:具有心理学意识的人在环网络物理系统 (HCPS):方法、算法和部署
- 批准号:
2339266 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant