Automated classification of douglas-fir beetle infested trees in Unpiloted Aerial Vehicle (UAV) acquired imagery**
对无人机 (UAV) 获取的图像中花旗松甲虫侵染的树木进行自动分类**
基本信息
- 批准号:536592-2018
- 负责人:
- 金额:$ 1.74万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Early detection of Douglas fir beetle (IBD) infestation is increasingly important in southern British Columbia, where the IBD infested area has grown from approximately 7,000 ha in 2013 to almost 80,000 ha in 2017. IBD infestation, generally kills the tree rapidly reducing the value of the timber when it is harvested or if is not harvested, contributing to the fuel available to sustain forest fires. Currently, detection of IBD infestation is carried out by visual inspection of the forest canopy during helicopter overview flights and by visual inspection of individual trees from ground level by field crews. Helicopter overviews can cover large areas but cannot quantify the scale of IBD infestation, because the human eye cannot perceive changes in the canopy during the early stage (green attack) of the infestation, and because the human eye cannot resolve individual trees from elevation of a helicopter overview flight. Thus, helicopter overviews cannot produce an accurate count of dead (grey attack) or dying (red attack) trees. Field visits, on the other hand, can accurately identify IBD infestation in the green, red, and grey attack stages, but field method do not scale well economically to large areas. Thus, current methods for quantifying IBD infestation are insufficient, resulting in an incomplete harvest of IBD infested trees when they are still economically valuable. Through a partnership with researchers at Thompson Rivers University, forestry professionals at Second Pass Forestry Ltd. (SPF) want to develop and validate a semi-automated system for analyzing unpiloted aerial vehicle (UAV) -acquired multispectral imagery to identify trees in all three stages (green, red, and grey) of IBD attack. The knowledge gained from this research will be transferred to SPF along with software implementing the image analysis workflow. Through publication of the outcomes of this research in a peer-reviewed journal, the knowledge gained from this research will be distributed more broadly to the forestry community.******
早期发现道格拉斯冷杉甲虫(IBD)侵扰在不列颠哥伦比亚省南部越来越重要,IBD侵扰面积已从2013年的约7,000公顷增加到2017年的近80,000公顷。 IBD的侵扰,通常会迅速杀死树木,降低木材的价值,当它被收获或如果没有收获,有助于燃料可用于维持森林火灾。目前,IBD感染的检测是通过在直升机概览飞行期间对森林树冠进行目视检查和由实地工作人员从地面对个别树木进行目视检查来进行的。 直升机概览可以覆盖大面积,但不能量化IBD侵扰的规模,因为人眼不能感知在侵扰的早期阶段(绿色侵袭)树冠的变化,并且因为人眼不能从直升机概览飞行的高度分辨单个树木。因此,直升机鸟瞰不能产生死亡(灰色攻击)或死亡(红色攻击)树木的准确计数。另一方面,实地考察可以准确地识别绿色、红色和灰色发作阶段的IBD侵染,但实地方法不能经济地扩展到大面积。 因此,目前用于定量IBD侵染的方法是不充分的,导致当IBD侵染的树木仍然具有经济价值时,它们的收获不完全。通过与汤普森河流大学的研究人员合作,Second Pass Forestry Ltd.(SPF)的林业专业人员希望开发和验证一种半自动化系统,用于分析无人机(UAV)获取的多光谱图像,以识别IBD攻击的所有三个阶段(绿色,红色和灰色)的树木。从本研究中获得的知识将与实现图像分析工作流程的软件一起沿着转移到SPF。通过在同行评审的期刊上发表这项研究的成果,这项研究所获得的知识将更广泛地传播给林业界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hill, David其他文献
Time series analysis of the impact of tobacco control policies on smoking prevalence among Australian adults, 2001-2011
- DOI:
10.2471/blt.13.118448 - 发表时间:
2014-06-01 - 期刊:
- 影响因子:11.1
- 作者:
Wakefield, Melanie A.;Coomber, Kerri;Hill, David - 通讯作者:
Hill, David
The psychological impact of a specialist referral and telephone intervention on male cancer patients: a randomised controlled trial
- DOI:
10.1002/pon.1609 - 发表时间:
2010-06-01 - 期刊:
- 影响因子:3.6
- 作者:
Livingston, Patricia M.;White, Victoria M.;Hill, David - 通讯作者:
Hill, David
Automated synthesis of a 184-member library of thiadiazepan-1,1-dioxide-4-ones.
- DOI:
10.1021/co100060x - 发表时间:
2011-05-09 - 期刊:
- 影响因子:0
- 作者:
Fenster, Erik;Long, Toby R.;Zang, Qin;Hill, David;Neuenswander, Benjamin;Lushington, Gerald H.;Zhou, Aihua;Santini, Conrad;Hanson, Paul R. - 通讯作者:
Hanson, Paul R.
Building the evidence base for ecological impact assessment and mitigation
- DOI:
10.1111/j.1365-2664.2011.02095.x - 发表时间:
2012-02-01 - 期刊:
- 影响因子:5.7
- 作者:
Hill, David;Arnold, Richard - 通讯作者:
Arnold, Richard
Palladium- and copper-catalyzed solution phase synthesis of a diverse library of isoquinolines.
- DOI:
10.1021/cc9000949 - 发表时间:
2009-11 - 期刊:
- 影响因子:0
- 作者:
Roy, Sudipta;Roy, Sujata;Neuenswander, Benjamin;Hill, David;Larock, Richard C. - 通讯作者:
Larock, Richard C.
Hill, David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hill, David', 18)}}的其他基金
Integrating Very-High-Resolution Imagery into Adaptive Rangeland Management
将极高分辨率图像集成到自适应牧场管理中
- 批准号:
RGPIN-2021-04002 - 财政年份:2022
- 资助金额:
$ 1.74万 - 项目类别:
Discovery Grants Program - Individual
Integrating Very-High-Resolution Imagery into Adaptive Rangeland Management
将极高分辨率图像集成到自适应牧场管理中
- 批准号:
RGPIN-2021-04002 - 财政年份:2021
- 资助金额:
$ 1.74万 - 项目类别:
Discovery Grants Program - Individual
Leveraging Ubiquity: A Big Data Approach to Environmental Observation
利用无处不在:环境观测的大数据方法
- 批准号:
RGPIN-2014-06114 - 财政年份:2018
- 资助金额:
$ 1.74万 - 项目类别:
Discovery Grants Program - Individual
Leveraging Ubiquity: A Big Data Approach to Environmental Observation
利用无处不在:环境观测的大数据方法
- 批准号:
RGPIN-2014-06114 - 财政年份:2017
- 资助金额:
$ 1.74万 - 项目类别:
Discovery Grants Program - Individual
Comparison of the accuracy of LiDAR and UAV based photogrammetry for generating digital surface models to quantify standing timber volume in a section of a B.C. forest
比较基于 LiDAR 和无人机的摄影测量生成数字表面模型以量化 BC 省某个区域的立木体积的准确性。
- 批准号:
502265-2016 - 财政年份:2016
- 资助金额:
$ 1.74万 - 项目类别:
Engage Grants Program
Leveraging Ubiquity: A Big Data Approach to Environmental Observation
利用无处不在:环境观测的大数据方法
- 批准号:
RGPIN-2014-06114 - 财政年份:2016
- 资助金额:
$ 1.74万 - 项目类别:
Discovery Grants Program - Individual
Leveraging Ubiquity: A Big Data Approach to Environmental Observation
利用无处不在:环境观测的大数据方法
- 批准号:
RGPIN-2014-06114 - 财政年份:2015
- 资助金额:
$ 1.74万 - 项目类别:
Discovery Grants Program - Individual
Leveraging Ubiquity: A Big Data Approach to Environmental Observation
利用无处不在:环境观测的大数据方法
- 批准号:
RGPIN-2014-06114 - 财政年份:2014
- 资助金额:
$ 1.74万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于传孢类型藓类植物系统的修订
- 批准号:30970188
- 批准年份:2009
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Postdoctoral Fellowship: EAR-PF: Establishing a new eruption classification with a multimethod approach
博士后奖学金:EAR-PF:用多种方法建立新的喷发分类
- 批准号:
2305462 - 财政年份:2024
- 资助金额:
$ 1.74万 - 项目类别:
Fellowship Award
Developing a Census Based Generative Geodemographic Classification System
开发基于人口普查的生成地理人口分类系统
- 批准号:
ES/Z50273X/1 - 财政年份:2024
- 资助金额:
$ 1.74万 - 项目类别:
Research Grant
From single-cell transcriptomic to single-cell fluxomic: characterising metabolic dysregulations for breast cancer subtype classification
从单细胞转录组到单细胞通量组:表征乳腺癌亚型分类的代谢失调
- 批准号:
EP/Y001613/1 - 财政年份:2024
- 资助金额:
$ 1.74万 - 项目类别:
Research Grant
Classification of contemporary Kansai dialects
当代关西方言的分类
- 批准号:
24K03842 - 财政年份:2024
- 资助金额:
$ 1.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
- 批准号:
BB/Y000455/1 - 财政年份:2024
- 资助金额:
$ 1.74万 - 项目类别:
Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
- 批准号:
BB/Y001117/1 - 财政年份:2024
- 资助金额:
$ 1.74万 - 项目类别:
Research Grant
Enhanced X-ray material classification using SiPMs and fast scintillators
使用 SiPM 和快速闪烁体增强 X 射线材料分类
- 批准号:
2905969 - 财政年份:2024
- 资助金额:
$ 1.74万 - 项目类别:
Studentship
Particle classification and identification in cryoET of crowded cellular environments
拥挤细胞环境中 CryoET 中的颗粒分类和识别
- 批准号:
BB/Y514007/1 - 财政年份:2024
- 资助金额:
$ 1.74万 - 项目类别:
Research Grant
EAGER: IMPRESS-U: Exploratory Research in Robust Machine Learning for Object Detection and Classification
EAGER:IMPRESS-U:用于对象检测和分类的鲁棒机器学习的探索性研究
- 批准号:
2415299 - 财政年份:2024
- 资助金额:
$ 1.74万 - 项目类别:
Standard Grant
OAC Core: Enhancing Network Security by Implementing an ML Malware Detection and Classification Scheme in P4 Programmable Data Planes and SmartNICs
OAC 核心:通过在 P4 可编程数据平面和智能网卡中实施 ML 恶意软件检测和分类方案来增强网络安全
- 批准号:
2403360 - 财政年份:2024
- 资助金额:
$ 1.74万 - 项目类别:
Standard Grant