Statistical Methods and Theory for Predictive Biomarker Study in Clinical Trials via Modeling and Analysis of Covariate Interactions
通过协变量相互作用建模和分析进行临床试验中预测生物标志物研究的统计方法和理论
基本信息
- 批准号:RGPIN-2018-04462
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In a clinical trial study, a patient characteristic is called a predictive biomarker if patients with different biomarker values gain different treatment benefits. Biomarker detection is important for finding the optimal treatments for individuals. This motivates me to develop new statistical methodologies in two directions. In Direction 1, I will discretize the biomarker by searching for cut-points, and model different treatment effect thresholds on the biomarker cut-point specified intervals. This leads to a biomarker cut-point model, which is in fact a mixture of regression models, that is difficult for traditional statistical inference because of model irregularities. I will develop testing methods, and hierarchical Bayesian inference for biomarker cut-point models, for studying the heterogeneity in treatment effects for biomarker-defined patient subgroups. I expect the research outcomes to be new testing methods with theoretical support, and new Bayesian techniques for estimation and confidence intervals, both overcoming model irregularities. The biomarker cut-point model approach is appealing among medical researchers for its clear interpretation. In Direction 2, I will develop a graph displaying the varying treatment effects for a continuous biomarker in its entire range. Local regression and/or non-parametric methods will be utilized to estimate the treatment-effect paths without pre-specified functional forms. Simultaneous confidence bands will be constructed for the treatment-effect path for drawing statistical conclusions. I expect the research outcomes to be new visualization tools enhanced by statistical inference for a complete understanding of the treatment-effects varying across biomarker values. This approach has the potential to become the new favorite among medical researchers for extracting more information and relying on less model assumptions. In both directions, I will explore the situations with single or multiple biomarkers or their combinations. The proposed research will provide new statistical tools for medical researchers and applied statisticians and address emerging statistical challenges in biomarker-aided clinical trial studies. I plan to extend the new ideas to statistical research, which will advance the theory and methods in mixture models, nonparametric statistics and local regression. I will train graduate students for solid statistical research in this area, and also for analyzing real clinical trial data. They will contribute to improving the statistical application and research in the related areas in the future.
在临床试验研究中,如果具有不同生物标志物值的患者获得不同的治疗益处,则将患者特征称为预测性生物标志物。生物标志物检测对于为个体找到最佳治疗方法非常重要。这促使我从两个方向发展新的统计方法。在方向1中,我将通过搜索临界点来离散化生物标志物,并在生物标志物临界点指定的区间上对不同的治疗效应阈值进行建模。这导致生物标志物临界点模型,其实际上是回归模型的混合物,由于模型不规则性,难以进行传统的统计推断。我将为生物标志物临界点模型开发测试方法和分层贝叶斯推断,用于研究生物标志物定义的患者亚组治疗效果的异质性。我希望研究成果是有理论支持的新测试方法,以及用于估计和置信区间的新贝叶斯技术,两者都克服了模型的不规则性。生物标志物临界点模型方法因其清晰的解释而在医学研究人员中很有吸引力。在方向2中,我将开发一个图表,显示连续生物标志物在其整个范围内的不同治疗效果。将使用局部回归和/或非参数方法估计治疗效应路径,无需预先指定函数形式。将为治疗效应路径构建同步置信带,以得出统计学结论。我希望研究结果是通过统计推断增强的新的可视化工具,以全面了解不同生物标志物值的治疗效果。这种方法有可能成为医学研究人员的新宠,因为它可以提取更多的信息,依赖更少的模型假设。在这两个方向上,我将探索单一或多种生物标志物或其组合的情况。拟议的研究将为医学研究人员和应用统计学家提供新的统计工具,并解决生物标志物辅助临床试验研究中出现的统计挑战。我计划将这些新的思想推广到统计研究中,这将促进混合模型、非参数统计和局部回归的理论和方法的发展。我将培养研究生在这一领域进行扎实的统计研究,并分析真实的临床试验数据。它们将有助于改进今后相关领域的统计应用和研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiang, Wenyu其他文献
Efficacy and safety of ciprofol (HSK3486) for procedural sedation and anesthesia induction in surgical patients: A systematic review and meta-analysis.
- DOI:
10.1016/j.heliyon.2023.e22634 - 发表时间:
2023-12 - 期刊:
- 影响因子:4
- 作者:
Wen, Jiaxuan;Liu, Chen;Ding, Xueying;Tian, Zimeng;Jiang, Wenyu;Wei, Xiuhong;Liu, Xin - 通讯作者:
Liu, Xin
Enhanced thymic selection of FoxP3+ regulatory T cells in the NOD mouse model of autoimmune diabetes
- DOI:
10.1073/pnas.0708899104 - 发表时间:
2007-11-13 - 期刊:
- 影响因子:11.1
- 作者:
Feuerer, Markus;Jiang, Wenyu;Benoist, Christophe - 通讯作者:
Benoist, Christophe
Tunnelling of electrons via the neighboring atom.
- DOI:
10.1038/s41377-023-01373-2 - 发表时间:
2024-01-16 - 期刊:
- 影响因子:19.4
- 作者:
Zhu, Ming;Tong, Jihong;Liu, Xiwang;Yang, Weifeng;Gong, Xiaochun;Jiang, Wenyu;Lu, Peifen;Li, Hui;Song, Xiaohong;Wu, Jian - 通讯作者:
Wu, Jian
Investigation of Voids Characteristics in an Asphalt Mixture Exposed to Salt Erosion Based on CT Images
基于 CT 图像研究盐蚀沥青混合料中的孔隙特征
- DOI:
10.3390/ma12223774 - 发表时间:
2019-11-02 - 期刊:
- 影响因子:3.4
- 作者:
Xiong, Rui;Jiang, Wenyu;Zhao, Hua - 通讯作者:
Zhao, Hua
Thymic negative selection is functional in NOD mice
- DOI:
10.1084/jem.20112593 - 发表时间:
2012-03-12 - 期刊:
- 影响因子:15.3
- 作者:
Mingueneau, Michael;Jiang, Wenyu;Benoist, Christophe - 通讯作者:
Benoist, Christophe
Jiang, Wenyu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiang, Wenyu', 18)}}的其他基金
Statistical Methods and Theory for Predictive Biomarker Study in Clinical Trials via Modeling and Analysis of Covariate Interactions
通过协变量相互作用建模和分析进行临床试验中预测生物标志物研究的统计方法和理论
- 批准号:
RGPIN-2018-04462 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods and Theory for Predictive Biomarker Study in Clinical Trials via Modeling and Analysis of Covariate Interactions
通过协变量相互作用建模和分析进行临床试验中预测生物标志物研究的统计方法和理论
- 批准号:
RGPIN-2018-04462 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods and Theory for Predictive Biomarker Study in Clinical Trials via Modeling and Analysis of Covariate Interactions
通过协变量相互作用建模和分析进行临床试验中预测生物标志物研究的统计方法和理论
- 批准号:
RGPIN-2018-04462 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods and Theory for Predictive Biomarker Study in Clinical Trials via Modeling and Analysis of Covariate Interactions
通过协变量相互作用建模和分析进行临床试验中预测生物标志物研究的统计方法和理论
- 批准号:
RGPIN-2018-04462 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods in the Design and Analysis of Clinical Trials and Assessment of Prediction with Patient-Specific Information
临床试验设计和分析中的统计方法以及患者特定信息的预测评估
- 批准号:
356016-2013 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods in the Design and Analysis of Clinical Trials and Assessment of Prediction with Patient-Specific Information
临床试验设计和分析中的统计方法以及患者特定信息的预测评估
- 批准号:
356016-2013 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods in the Design and Analysis of Clinical Trials and Assessment of Prediction with Patient-Specific Information
临床试验设计和分析中的统计方法以及患者特定信息的预测评估
- 批准号:
356016-2013 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods in the Design and Analysis of Clinical Trials and Assessment of Prediction with Patient-Specific Information
临床试验设计和分析中的统计方法以及患者特定信息的预测评估
- 批准号:
356016-2013 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods in the Design and Analysis of Clinical Trials and Assessment of Prediction with Patient-Specific Information
临床试验设计和分析中的统计方法以及患者特定信息的预测评估
- 批准号:
356016-2013 - 财政年份:2013
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Computational methods in the statistical analysis of microarray data and survival data
微阵列数据和生存数据统计分析中的计算方法
- 批准号:
356016-2008 - 财政年份:2012
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
- 批准号:
2338760 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
Collaborative Research: DMS/NIGMS 2: New statistical methods, theory, and software for microbiome data
合作研究:DMS/NIGMS 2:微生物组数据的新统计方法、理论和软件
- 批准号:
10797410 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Statistical Methods and Theory for Predictive Biomarker Study in Clinical Trials via Modeling and Analysis of Covariate Interactions
通过协变量相互作用建模和分析进行临床试验中预测生物标志物研究的统计方法和理论
- 批准号:
RGPIN-2018-04462 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Approximations of computationally intensive statistical learning algorithms: theory and methods
计算密集型统计学习算法的近似:理论和方法
- 批准号:
RGPIN-2019-06487 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric statistical methods based on graph theory
基于图论的非参数统计方法
- 批准号:
RGPIN-2022-03264 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Statistical theory and methods for high-dimensional data
高维数据统计理论与方法
- 批准号:
RGPIN-2016-03890 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods and Theory for Clinical Trials in the Era of Patient-Oriented Research and Personalized Medicine
以患者为中心的研究和个性化医疗时代临床试验的统计方法和理论
- 批准号:
RGPIN-2022-03788 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Fast and Accurate Statistical Learning and Inference from Large-Scale Data: Theory, Methods, and Algorithms
职业:从大规模数据中快速准确地进行统计学习和推理:理论、方法和算法
- 批准号:
2046874 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
Statistical Methods and Theory for Predictive Biomarker Study in Clinical Trials via Modeling and Analysis of Covariate Interactions
通过协变量相互作用建模和分析进行临床试验中预测生物标志物研究的统计方法和理论
- 批准号:
RGPIN-2018-04462 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
FRG: Collaborative Research: Dynamic Tensors: Statistical Methods, Theory, and Applications
FRG:协作研究:动态张量:统计方法、理论和应用
- 批准号:
2052949 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant