FRG: Collaborative Research: Dynamic Tensors: Statistical Methods, Theory, and Applications

FRG:协作研究:动态张量:统计方法、理论和应用

基本信息

  • 批准号:
    2052949
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Dynamic tensor data, represented by multidimensional arrays that vary in time, has become increasingly important to society at large. It is collected in a wide range of applications, from biology and medical research, natural sciences, and engineering to social sciences, economics, and finance. This research aims to develop novel statistical theory, methods, and algorithms for analyzing large dynamic tensor data. The work also includes analysis of the computational efficiency and utility of the methods under development. The results will provide state-of-art statistical tools for effectively extracting useful information from such data and aiding practical decision making in a wide spectrum of applications. The project will apply the new methods to important examples, including motion behavior modeling and crime data analysis. The project will foster collaborations among students and young researchers through involvement in cutting-edge research. Software and other tools will be made publicly available, enhancing scientific progress and data driven decision-making processes in practical applications.The objectives of the research are to develop statistical theory, methods, and algorithms for analyzing large dynamic tensor data and to demonstrate their feasibility, effectiveness, and utility in interesting applications. Dynamic tensor data, an area with opportunities for systematic methodological and theoretical treatment from a statistical point of view, is creating new challenges and opportunities for researchers. The project will develop autoregressive and dynamic factor models for continuous tensor time series data, and generalized dynamic tensor models for binary, count, and other non-Gaussian data; produce new tools for forecasting, parameter estimation, and statistical inferences for such models; and study the theoretical and empirical properties of the new methods. The project findings are expected to have impact in other fields of statistics, including discrete tensor analysis, video analysis, inference of high-dimensional tensors, and analysis of high dimensional dynamic systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由随时间变化的多维数组表示的动态张量数据对整个社会变得越来越重要。它被收集在广泛的应用中,从生物学和医学研究,自然科学和工程到社会科学,经济学和金融学。本研究旨在开发新的统计理论,方法和算法,用于分析大型动态张量数据。这项工作还包括分析正在开发的方法的计算效率和效用。结果将提供最先进的统计工具,有效地从这些数据中提取有用的信息,并在广泛的应用中帮助实际决策。该项目将把新方法应用于重要的例子,包括运动行为建模和犯罪数据分析。该项目将通过参与尖端研究促进学生和青年研究人员之间的合作。软件和其他工具将公开提供,以促进科学进步和实际应用中的数据驱动决策过程。研究的目标是开发用于分析大型动态张量数据的统计理论,方法和算法,并证明其可行性,有效性和实用性。动态张量数据,一个有机会从统计的角度进行系统的方法和理论处理的领域,正在为研究人员创造新的挑战和机遇。该项目将开发用于连续张量时间序列数据的自回归和动态因子模型,以及用于二进制、计数和其他非高斯数据的广义动态张量模型;为此类模型开发用于预测、参数估计和统计推断的新工具;并研究新方法的理论和经验特性。该项目的研究成果预计将在其他统计领域产生影响,包括离散张量分析,视频分析,高维张量的推理和高维动态系统的分析。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hybrid Kronecker Product Decomposition and Approximation
Asymptotic normality of robust M-estimators with convex penalty
具有凸惩罚的鲁棒 M 估计量的渐近正态性
  • DOI:
    10.1214/22-ejs2065
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Bellec, Pierre C.;Shen, Yiwei;Zhang, Cun-Hui
  • 通讯作者:
    Zhang, Cun-Hui
Adaptive Linear Estimating Equations
  • DOI:
    10.48550/arxiv.2307.07320
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mufang Ying;K. Khamaru;Cun-Hui Zhang
  • 通讯作者:
    Mufang Ying;K. Khamaru;Cun-Hui Zhang
Statistical Limits of Adaptive Linear Models: Low-Dimensional Estimation and Inference
  • DOI:
    10.48550/arxiv.2310.00532
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Licong Lin;Mufang Ying;Suvrojit Ghosh;K. Khamaru;Cun-Hui Zhang
  • 通讯作者:
    Licong Lin;Mufang Ying;Suvrojit Ghosh;K. Khamaru;Cun-Hui Zhang
KoPA: Automated Kronecker Product Approximation
  • DOI:
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chencheng Cai;Rong Chen;Han Xiao
  • 通讯作者:
    Chencheng Cai;Rong Chen;Han Xiao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cun-Hui Zhang其他文献

EMPIRICAL BAYES AND COMPOUND ESTIMATION OF NORMAL MEANS
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cun-Hui Zhang
  • 通讯作者:
    Cun-Hui Zhang
Risk bounds in isotonic regression
  • DOI:
    10.1214/aos/1021379864
  • 发表时间:
    2002-04
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Cun-Hui Zhang
  • 通讯作者:
    Cun-Hui Zhang
Fourier Methods for Estimating Mixing Densities and Distributions
  • DOI:
    10.1214/aos/1176347627
  • 发表时间:
    1990-06
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Cun-Hui Zhang
  • 通讯作者:
    Cun-Hui Zhang
Some Moment and Exponential Inequalities for V-Statistics with Bounded Kernels
GENERALIZED MAXIMUM LIKELIHOOD ESTIMATION OF NORMAL MIXTURE DENSITIES
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cun-Hui Zhang
  • 通讯作者:
    Cun-Hui Zhang

Cun-Hui Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cun-Hui Zhang', 18)}}的其他基金

Estimation and Inference with High-Dimensional Data
高维数据的估计和推理
  • 批准号:
    2210850
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Methods, Algorithms, and Theory for Large Tensors
合作研究:大张量的统计方法、算法和理论
  • 批准号:
    1721495
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
SEMIPARAMETRIC INFERENCE WITH HIGH-DIMENSIONAL DATA
高维数据的半参数推理
  • 批准号:
    1513378
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
RI: Medium: Collaborative Research: Next-Generation Statistical Optimization Methods for Big Data Computing
RI:媒介:协作研究:大数据计算的下一代统计优化方法
  • 批准号:
    1407939
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
BIGDATA: Small: DA: Statistical Machine Learning Methods for Scalable Data Analysis
BIGDATA:小型:DA:用于可扩展数据分析的统计机器学习方法
  • 批准号:
    1250985
  • 财政年份:
    2013
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
STATISTICAL INFERENCE WITH HIGH-DIMENSIONAL DATA
高维数据的统计推断
  • 批准号:
    1209014
  • 财政年份:
    2012
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Statistical Problems in Closed-Loop Diabetes Control
闭环糖尿病控制中的统计问题
  • 批准号:
    1106753
  • 财政年份:
    2011
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Statistical Methods and Theory in Some High-Dimensional Problems
一些高维问题的统计方法和理论
  • 批准号:
    0906420
  • 财政年份:
    2009
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Multi-Way Semilinear Methods with Applications to Microarray Data
多路半线性方法在微阵列数据中的应用
  • 批准号:
    0604571
  • 财政年份:
    2006
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Complex Datasets and Inverse Problems: Tomography, Networks, and Beyond; Rutgers University - New Brunswick, NJ; October 21-22, 2005
复杂数据集和反问题:断层扫描、网络等;
  • 批准号:
    0534181
  • 财政年份:
    2005
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了