Intelligent scene understanding for collaborative mobile augmented reality

协作移动增强现实的智能场景理解

基本信息

  • 批准号:
    530666-2018
  • 负责人:
  • 金额:
    $ 4.37万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Collaborative Research and Development Grants
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Augmented Reality (AR) is currently one of the most anticipated emerging technology, where the combination of virtual objects with the real world provide the end-user with a natural and interactive environment. AR has found its application in many fields, including digital media, entertainment, security, healthcare, etc.****Current AR technology limits the possibilities of AR through only having a rudimentary understanding of the scene surrounding a user. Partnering with AWE Company Ltd., we will develop new algorithms that will enable semantic understanding of the scene for intelligent AR, such as understanding what objects are around the user. This level of understanding will help AWE in delivering more robust AR experiences. We are especially interested in enabling collaborative AR experiences, where multiple users can enjoy and interact with the same AR experience at the same time. Specifically, we will : 1)Develop an automated method to semantically understand the user's environment. The proposed method will search the user's data (2D image and 3D point cloud) using a library of pre-trained objects, and compute locations and sizes of the identified objects. Segmenting the data and localizing detected objects will take advantage of state-of-the-art deep learning techniques to account for changes in object and environment appearance. 2. Achieve state-of-the-art in Visual-Based Localization (VBL) by using the semantic information obtained from the first contribution, and represent all the users with a common coordinate system to achieve collaborative AR. ****Together, the proposed methods will result in a robust framework for creating intelligent and collaborative mobile AR applications. The proposed research will help to position Canada as a leader in multimedia technologies, while the resultant technology transfer to Canadian industry will strengthen Canada's global competitiveness and create positive impacts to Canadian economy and society.********
增强现实(AR)是当前最令人期待的新兴技术之一,其中虚拟对象与真实的世界的组合为最终用户提供自然的和交互的环境。AR已经在许多领域得到应用,包括数字媒体、娱乐、安全、医疗保健等。当前的AR技术通过仅对用户周围的场景有基本的了解来限制AR的可能性。与AWE Company Ltd合作,我们将开发新的算法,使智能AR能够对场景进行语义理解,例如理解用户周围的物体。这种理解水平将有助于AWE提供更强大的AR体验。我们对实现协作式AR体验特别感兴趣,多个用户可以同时享受相同的AR体验并与之互动。具体来说,我们将:1)开发一种自动化的方法来从语义上理解用户的环境。所提出的方法将使用预先训练的对象库搜索用户的数据(2D图像和3D点云),并计算所识别对象的位置和大小。分割数据和定位检测到的对象将利用最先进的深度学习技术来考虑对象和环境外观的变化。2.通过使用从第一个贡献中获得的语义信息来实现基于视觉的定位(VBL)的最新技术,并使用公共坐标系来表示所有用户以实现协作AR。* 总之,提出的方法将产生一个强大的框架,用于创建智能和协作的移动的AR应用程序。拟议的研究将有助于将加拿大定位为多媒体技术的领导者,而由此产生的技术转让给加拿大工业将加强加拿大的全球竞争力,并对加拿大经济和社会产生积极影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Khan, Naimul其他文献

CNN-Based Multistage Gated Average Fusion (MGAF) for Human Action Recognition Using Depth and Inertial Sensors
  • DOI:
    10.1109/jsen.2020.3028561
  • 发表时间:
    2021-02-01
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Ahmad, Zeeshan;Khan, Naimul
  • 通讯作者:
    Khan, Naimul
Mobile Health-Supported Virtual Reality and Group Problem Management Plus: Protocol for a Cluster Randomized Trial Among Urban Refugee and Displaced Youth in Kampala, Uganda (Tushirikiane4MH, Supporting Each Other for Mental Health).
  • DOI:
    10.2196/42342
  • 发表时间:
    2022-12-08
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Logie, Carmen H;Okumu, Moses;Kortenaar, Jean-Luc;Gittings, Lesley;Khan, Naimul;Hakiza, Robert;Kibuuka Musoke, Daniel;Nakitende, Aidah;Katisi, Brenda;Kyambadde, Peter;Khan, Torsum;Lester, Richard;Mbuagbaw, Lawrence
  • 通讯作者:
    Mbuagbaw, Lawrence
Classification of lung pathologies in neonates using dual-tree complex wavelet transform.
  • DOI:
    10.1186/s12938-023-01184-x
  • 发表时间:
    2023-12-04
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Aujla, Sagarjit;Mohamed, Adel;Tan, Ryan;Magtibay, Karl;Tan, Randy;Gao, Lei;Khan, Naimul;Umapathy, Karthikeyan
  • 通讯作者:
    Umapathy, Karthikeyan
Inertial Sensor Data to Image Encoding for Human Action Recognition
  • DOI:
    10.1109/jsen.2021.3062261
  • 发表时间:
    2021-05-01
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Ahmad, Zeeshan;Khan, Naimul
  • 通讯作者:
    Khan, Naimul
Human Action Recognition Using Deep Multilevel Multimodal (M2) Fusion of Depth and Inertial Sensors
  • DOI:
    10.1109/jsen.2019.2947446
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Ahmad, Zeeshan;Khan, Naimul
  • 通讯作者:
    Khan, Naimul

Khan, Naimul的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Khan, Naimul', 18)}}的其他基金

Multimodal, Interpretable, and Interactive Machine Learning for Multimedia
多媒体的多模式、可解释和交互式机器学习
  • 批准号:
    RGPIN-2020-05471
  • 财政年份:
    2022
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Discovery Grants Program - Individual
A cloud-based Machine Learning Framework for Assessment of Stress/Engagement through Multimodal Sensors
基于云的机器学习框架,用于通过多模态传感器评估压力/参与度
  • 批准号:
    537987-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Collaborative Research and Development Grants
Multimodal, Interpretable, and Interactive Machine Learning for Multimedia
多媒体的多模式、可解释和交互式机器学习
  • 批准号:
    RGPIN-2020-05471
  • 财政年份:
    2021
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Discovery Grants Program - Individual
Multimodal, Interpretable, and Interactive Machine Learning for Multimedia
多媒体的多模式、可解释和交互式机器学习
  • 批准号:
    DGECR-2020-00438
  • 财政年份:
    2020
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Discovery Launch Supplement
Multimodal, Interpretable, and Interactive Machine Learning for Multimedia
多媒体的多模式、可解释和交互式机器学习
  • 批准号:
    RGPIN-2020-05471
  • 财政年份:
    2020
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Discovery Grants Program - Individual
Research and development of a cloud-based context-aware API for semantic scene understanding
基于云的上下文感知API的语义场景理解研究与开发
  • 批准号:
    558247-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Alliance Grants
COVID-19 and the Efficacy of Using Virtual Reality Scenarios to Safely Train Police in Mental Health Crisis Response
COVID-19 以及使用虚拟现实场景安全培训警察应对心理健康危机的功效
  • 批准号:
    554476-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Alliance Grants
A cloud-based Machine Learning Framework for Assessment of Stress/Engagement through Multimodal Sensors
基于云的机器学习框架,用于通过多模态传感器评估压力/参与度
  • 批准号:
    537987-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Collaborative Research and Development Grants
COVID-19 - An intelligent system for contact tracing, monitoring, and privacy preserving data analytics during the COVID-19 pandemic
COVID-19 - 用于在 COVID-19 大流行期间进行接触者追踪、监控和隐私保护数据分析的智能系统
  • 批准号:
    551077-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Alliance Grants
A cloud-based Machine Learning Framework for Assessment of Stress/Engagement through Multimodal Sensors
基于云的机器学习框架,用于通过多模态传感器评估压力/参与度
  • 批准号:
    537987-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Collaborative Research and Development Grants

相似海外基金

CAREER: Active Scene Understanding By and For Robot Manipulation
职业:机器人操作的活动场景理解
  • 批准号:
    2348698
  • 财政年份:
    2023
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Continuing Grant
RI: Small: Toward Efficient and Robust Dynamic Scene Understanding Based on Visual Correspondences
RI:小:基于视觉对应的高效、鲁棒的动态场景理解
  • 批准号:
    2310254
  • 财政年份:
    2023
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Standard Grant
User-centric Audio-Visual Scene Understanding for Augmented Reality Smart Glasses in the Wild
以用户为中心的野外增强现实智能眼镜的视听场景理解
  • 批准号:
    23K16912
  • 财政年份:
    2023
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Towards practical scene understanding in the wild
迈向野外实际场景理解
  • 批准号:
    569435-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A neural model of intuitive physical scene understanding
直观物理场景理解的神经模型
  • 批准号:
    532759-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Collaborative Research: RI: Medium: Learning Compositional Implicit Representations for 3D Scene Understanding
合作研究:RI:媒介:学习 3D 场景理解的组合隐式表示
  • 批准号:
    2211258
  • 财政年份:
    2022
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Learning Compositional Implicit Representations for 3D Scene Understanding
合作研究:RI:媒介:学习 3D 场景理解的组合隐式表示
  • 批准号:
    2211259
  • 财政年份:
    2022
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Standard Grant
CAREER: Active Scene Understanding By and For Robot Manipulation
职业:机器人操作的活动场景理解
  • 批准号:
    2143601
  • 财政年份:
    2022
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Learning Compositional Implicit Representations for 3D Scene Understanding
合作研究:RI:媒介:学习 3D 场景理解的组合隐式表示
  • 批准号:
    2211260
  • 财政年份:
    2022
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Standard Grant
Event-based Vision for Robotic Scene Understanding
用于机器人场景理解的基于事件的视觉
  • 批准号:
    RGPIN-2021-03720
  • 财政年份:
    2022
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了