A cloud-based Machine Learning Framework for Assessment of Stress/Engagement through Multimodal Sensors
基于云的机器学习框架,用于通过多模态传感器评估压力/参与度
基本信息
- 批准号:537987-2018
- 负责人:
- 金额:$ 7.13万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Increased stress and anxiety can create a variety of problems within the human body, and can be especially detrimental to the immune system. Targeting stress relief prior to surgical operations can increase the ability of patients to heal faster. Non-pharmacological stress detection such as distraction using video games, music, and smartphone based behavioural interventions can deliver positive results without associated risks. Augmented/ Virtual Reality has been found to have specific benefits when used in stressful clinical settings, including, improved emotional well-being, increased positive mood shifts and decreased negative emotions. Shaftesbury Inc., in partnership with hospitals and clinics has been developing a Positive Distraction Entertainment System (PDES). The purpose of the system is to automatically detect stress level in users based on physiological signals (e.g. heartrate) and provide an adaptive experience, where the experience (e.g. a movie/game) is dynamically adapted based on the assessed stress level in users. Such a system can go beyond the realm of healthcare, providing high entertainment value through dynamic experience. However, regardless of the domain, the core challenge in the PDES system is to develop a solid algorithm to assess the stress/engagement level of users when experiencing an entertainment product. Merely utilizing a single physiological signal such as heartrate will not be enough to accurately assess the stress/engagement level. The purpose of this project is to develop a multimodal cloud-based machine learning framework for automatic stress/engagement level assessment for users from multiple physiological (e.g. heartrate, EMG, respiration) and behavioural signals (e.g. gesture, facial expression), and provide intuitive and interpretable visualization and analytics tools that provides non-technological stakeholders the ability to easily fine-tune such algorithms. The proposed research will help to position Canada as a leader in adopting advanced technologies such as XR and machine learning in healthcare and entertainment, while the resultant technology transfer to Canadian industry will strengthen Canada's global competitiveness and create positive impacts to Canadian economy and society.
增加的压力和焦虑会在人体内造成各种问题,特别是对免疫系统有害。在手术前针对性地释放压力可以增加患者更快愈合的能力。非药物压力检测,例如使用电子游戏、音乐和基于智能手机的行为干预来分散注意力,可以带来积极的结果,而不会带来相关的风险。增强/虚拟现实被发现在有压力的临床环境中有特定的好处,包括改善情绪健康,增加积极情绪变化和减少负面情绪。Shaftesbury Inc.与医院和诊所合作,一直在开发一种积极的分心娱乐系统(PDES)。该系统的目的是基于生理信号(例如心率)自动检测用户中的压力水平,并提供适应性体验,其中该体验(例如电影/游戏)基于用户中评估的压力水平而被动态调整。这样的系统可以超越医疗保健领域,通过动态体验提供高娱乐价值。然而,无论在哪个领域,PDES系统中的核心挑战是开发一种可靠的算法来评估用户在体验娱乐产品时的压力/参与度。仅仅利用单一的生理信号,如心率,将不足以准确地评估压力/投入程度。这个项目的目的是开发一个基于云的多模式机器学习框架,用于根据多种生理信号(如心率、肌电、呼吸)和行为信号(如手势、面部表情)为用户自动评估压力/参与度水平,并提供直观和可解释的可视化和分析工具,使非技术利益攸关方能够轻松微调此类算法。拟议的研究将有助于使加拿大在医疗保健和娱乐领域采用XR和机器学习等先进技术方面处于领先地位,而由此产生的对加拿大工业的技术转移将增强加拿大的全球竞争力,并对加拿大经济和社会产生积极影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khan, Naimul其他文献
CNN-Based Multistage Gated Average Fusion (MGAF) for Human Action Recognition Using Depth and Inertial Sensors
- DOI:
10.1109/jsen.2020.3028561 - 发表时间:
2021-02-01 - 期刊:
- 影响因子:4.3
- 作者:
Ahmad, Zeeshan;Khan, Naimul - 通讯作者:
Khan, Naimul
Mobile Health-Supported Virtual Reality and Group Problem Management Plus: Protocol for a Cluster Randomized Trial Among Urban Refugee and Displaced Youth in Kampala, Uganda (Tushirikiane4MH, Supporting Each Other for Mental Health).
- DOI:
10.2196/42342 - 发表时间:
2022-12-08 - 期刊:
- 影响因子:1.7
- 作者:
Logie, Carmen H;Okumu, Moses;Kortenaar, Jean-Luc;Gittings, Lesley;Khan, Naimul;Hakiza, Robert;Kibuuka Musoke, Daniel;Nakitende, Aidah;Katisi, Brenda;Kyambadde, Peter;Khan, Torsum;Lester, Richard;Mbuagbaw, Lawrence - 通讯作者:
Mbuagbaw, Lawrence
Classification of lung pathologies in neonates using dual-tree complex wavelet transform.
- DOI:
10.1186/s12938-023-01184-x - 发表时间:
2023-12-04 - 期刊:
- 影响因子:3.9
- 作者:
Aujla, Sagarjit;Mohamed, Adel;Tan, Ryan;Magtibay, Karl;Tan, Randy;Gao, Lei;Khan, Naimul;Umapathy, Karthikeyan - 通讯作者:
Umapathy, Karthikeyan
Inertial Sensor Data to Image Encoding for Human Action Recognition
- DOI:
10.1109/jsen.2021.3062261 - 发表时间:
2021-05-01 - 期刊:
- 影响因子:4.3
- 作者:
Ahmad, Zeeshan;Khan, Naimul - 通讯作者:
Khan, Naimul
Human Action Recognition Using Deep Multilevel Multimodal (M2) Fusion of Depth and Inertial Sensors
- DOI:
10.1109/jsen.2019.2947446 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:4.3
- 作者:
Ahmad, Zeeshan;Khan, Naimul - 通讯作者:
Khan, Naimul
Khan, Naimul的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Khan, Naimul', 18)}}的其他基金
Multimodal, Interpretable, and Interactive Machine Learning for Multimedia
多媒体的多模式、可解释和交互式机器学习
- 批准号:
RGPIN-2020-05471 - 财政年份:2022
- 资助金额:
$ 7.13万 - 项目类别:
Discovery Grants Program - Individual
A cloud-based Machine Learning Framework for Assessment of Stress/Engagement through Multimodal Sensors
基于云的机器学习框架,用于通过多模态传感器评估压力/参与度
- 批准号:
537987-2018 - 财政年份:2021
- 资助金额:
$ 7.13万 - 项目类别:
Collaborative Research and Development Grants
Multimodal, Interpretable, and Interactive Machine Learning for Multimedia
多媒体的多模式、可解释和交互式机器学习
- 批准号:
RGPIN-2020-05471 - 财政年份:2021
- 资助金额:
$ 7.13万 - 项目类别:
Discovery Grants Program - Individual
Multimodal, Interpretable, and Interactive Machine Learning for Multimedia
多媒体的多模式、可解释和交互式机器学习
- 批准号:
DGECR-2020-00438 - 财政年份:2020
- 资助金额:
$ 7.13万 - 项目类别:
Discovery Launch Supplement
Multimodal, Interpretable, and Interactive Machine Learning for Multimedia
多媒体的多模式、可解释和交互式机器学习
- 批准号:
RGPIN-2020-05471 - 财政年份:2020
- 资助金额:
$ 7.13万 - 项目类别:
Discovery Grants Program - Individual
Research and development of a cloud-based context-aware API for semantic scene understanding
基于云的上下文感知API的语义场景理解研究与开发
- 批准号:
558247-2020 - 财政年份:2020
- 资助金额:
$ 7.13万 - 项目类别:
Alliance Grants
COVID-19 and the Efficacy of Using Virtual Reality Scenarios to Safely Train Police in Mental Health Crisis Response
COVID-19 以及使用虚拟现实场景安全培训警察应对心理健康危机的功效
- 批准号:
554476-2020 - 财政年份:2020
- 资助金额:
$ 7.13万 - 项目类别:
Alliance Grants
COVID-19 - An intelligent system for contact tracing, monitoring, and privacy preserving data analytics during the COVID-19 pandemic
COVID-19 - 用于在 COVID-19 大流行期间进行接触者追踪、监控和隐私保护数据分析的智能系统
- 批准号:
551077-2020 - 财政年份:2020
- 资助金额:
$ 7.13万 - 项目类别:
Alliance Grants
A cloud-based Machine Learning Framework for Assessment of Stress/Engagement through Multimodal Sensors
基于云的机器学习框架,用于通过多模态传感器评估压力/参与度
- 批准号:
537987-2018 - 财政年份:2019
- 资助金额:
$ 7.13万 - 项目类别:
Collaborative Research and Development Grants
Intelligent scene understanding for collaborative mobile augmented reality
协作移动增强现实的智能场景理解
- 批准号:
530666-2018 - 财政年份:2018
- 资助金额:
$ 7.13万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
- 批准号:12305290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
- 批准号:82003509
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Cloud-Based Machine Learning and Biomarker Visual Analytics for Salivary Proteomics
基于云的机器学习和唾液蛋白质组生物标志物可视化分析
- 批准号:
10827649 - 财政年份:2023
- 资助金额:
$ 7.13万 - 项目类别:
Antibiotic Resistance Determination Utilizing Machine Learning
利用机器学习确定抗生素耐药性
- 批准号:
10442982 - 财政年份:2022
- 资助金额:
$ 7.13万 - 项目类别:
Antibiotic Resistance Determination Utilizing Machine Learning
利用机器学习确定抗生素耐药性
- 批准号:
10663905 - 财政年份:2022
- 资助金额:
$ 7.13万 - 项目类别:
Constructing a cloud-based battery management system to optimize lithium-ion battery system performance and lifespan using machine learning and data mining techniques
利用机器学习和数据挖掘技术构建基于云的电池管理系统,以优化锂离子电池系统性能和寿命
- 批准号:
566616-2021 - 财政年份:2022
- 资助金额:
$ 7.13万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Constructing a cloud-based battery management system to optimize lithium-ion battery system performance and lifespan using machine learning and data mining techniques
利用机器学习和数据挖掘技术构建基于云的电池管理系统,以优化锂离子电池系统性能和寿命
- 批准号:
566616-2021 - 财政年份:2021
- 资助金额:
$ 7.13万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
A MICROFLUIDIC AND MACHINE LEARNING-ENABLED SMARTLAB FOR AUTONOMOUS REMOTE EXECUTION AND ITERATION OF MULTISCALE LIVE CELL ASSAYS FOR DRUG DISCOVERY
支持微流控和机器学习的智能实验室,用于自主远程执行和迭代多尺度活细胞测定以进行药物发现
- 批准号:
10505107 - 财政年份:2021
- 资助金额:
$ 7.13万 - 项目类别:
A cloud-based Machine Learning Framework for Assessment of Stress/Engagement through Multimodal Sensors
基于云的机器学习框架,用于通过多模态传感器评估压力/参与度
- 批准号:
537987-2018 - 财政年份:2021
- 资助金额:
$ 7.13万 - 项目类别:
Collaborative Research and Development Grants
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
- 批准号:
10654594 - 财政年份:2021
- 资助金额:
$ 7.13万 - 项目类别:
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
- 批准号:
10266670 - 财政年份:2021
- 资助金额:
$ 7.13万 - 项目类别:
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
- 批准号:
10434141 - 财政年份:2021
- 资助金额:
$ 7.13万 - 项目类别: