Semilinear Differential Equations at Resonance

共振时的半线性微分方程

基本信息

  • 批准号:
    525911-2018
  • 负责人:
  • 金额:
    $ 0.33万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    University Undergraduate Student Research Awards
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
没有摘要--Aucun Sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Korfanty, Emily其他文献

Korfanty, Emily的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Korfanty, Emily', 18)}}的其他基金

Circularly symmetric diffraction and the pinwheel tiling
圆对称衍射和风车平铺
  • 批准号:
    559713-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Groupoid C*-algebras associated with iterated function systems
与迭代函数系统相关的 Groupoid C* 代数
  • 批准号:
    529361-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Solutions for boundary value problems arising in chemical reactor theory
化学反应器理论中边值问题的求解
  • 批准号:
    510295-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 0.33万
  • 项目类别:
    University Undergraduate Student Research Awards

相似海外基金

Blow-up phenomena in semilinear elliptic partial differential equations
半线性椭圆偏微分方程中的爆炸现象
  • 批准号:
    DP0984807
  • 财政年份:
    2009
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Discovery Projects
Bilinear Controllability of Semilinear Partial Differential Equations
半线性偏微分方程的双线性可控性
  • 批准号:
    0204037
  • 财政年份:
    2002
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
Qualitative theory of solutions for semilinear elliptic partial differential equations
半线性椭圆偏微分方程解的定性理论
  • 批准号:
    12640197
  • 财政年份:
    2000
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic Processes and Semilinear Partial Differential Equations
随机过程和半线性偏微分方程
  • 批准号:
    9971009
  • 财政年份:
    1999
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
Stochastic Processes and Semilinear Partial Differential Equations
随机过程和半线性偏微分方程
  • 批准号:
    9970942
  • 财政年份:
    1999
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Continuing grant
Linear and Semilinear Partial Differential Equations
线性和半线性偏微分方程
  • 批准号:
    9622942
  • 财政年份:
    1996
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Semilinear Partial Differential Equations and Their Applications
数学科学:半线性偏微分方程及其应用
  • 批准号:
    9305658
  • 财政年份:
    1993
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Bifurcation From Infinity for Semilinear Elliptic Partial Differential Equations: The Influence of Nonlinear Growth and Domain Geometry
数学科学:半线性椭圆偏微分方程的无穷大分岔:非线性增长和域几何的影响
  • 批准号:
    9201006
  • 财政年份:
    1992
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Semilinear Partial Differential Equations and Systems
数学科学:半线性偏微分方程和系统
  • 批准号:
    9101446
  • 财政年份:
    1991
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Semilinear Partial Differential Equations and Quasilinear Variational Inequalities
数学科学:半线性偏微分方程和拟线性变分不等式
  • 批准号:
    9101828
  • 财政年份:
    1991
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了