Research of the structure of unbounded viscosity solutions to semilinear degenerate elliptic equations in R^N
R^N中半线性简并椭圆方程无界粘性解的结构研究
基本信息
- 批准号:16540151
- 负责人:
- 金额:$ 1.47万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Consider a following semilinear degenerate partial differential equation:-g(|x|)Δu + u|u|^p - f(|x|) = 0 ∈ R^N (1)where g is a nonnegative plynominal of degree ell > 2 in a neighborhood of a point at infinity and f is also a plynominal in a neighborhood of a point at infinity. Moreover, assume g holds bounded zero points. Hence, the differential equation is a degenerate tyle. We don't impose the boundary condition to solutions of (1) in the neighborhood of the point infinity. Then, It is possible to exist many continuous viscosity solutions.Our purpose of this research was to analyze the structure of the set of many continuous viscosity solutions of (1). The results of our research are as follows. We the first showed that an inequality of relations of N and k is a necessary and sufficient condition to decide whether radically symmetric solutions are infinite or single where k is a coefficient of a maxima order of f. Moreover, we proved that a set of many radically symmetric solutions is homeomorphic to R^1. The secondly, under the assumptions N = 2 and that lower order terms of polynominal of f, g do not exist, we found the condition to judge whether there exists non radically symmetric solution or not. If non-radically symmetric solution exists we also showed how many non-radically symmetric solutions there were. That is, We showed that the number of solutions was different depending on the value that related to l, p, k.
考虑如下半线性退化偏微分方程:-g(|X|)Δu + u| u| 10 - 12 - 2000(|X|)= 0 ∈ R^N(1)其中g是在无穷远点邻域内的次e 11> 2的非负负范数,f也是在无穷远点邻域内的非负范数.此外,假设g保持有界零点。因此,该微分方程是退化型的。在无穷远点的邻域内,我们不对方程(1)的解施加边界条件。本文的主要目的是分析方程(1)的多个连续粘性解的结构。我们的研究结果如下。我们首先证明了N与k的关系的一个不等式是判定根对称解是无穷大还是单解的一个充分必要条件,其中k是f的一个极大阶系数。此外,我们还证明了一组多个根对称解与R^1同胚。其次,在N = 2和f,g的多项式的低阶项不存在的条件下,给出了判断方程是否存在非根对称解的条件。如果存在非根对称解,我们也给出了有多少个非根对称解。也就是说,我们证明了解的数量是不同的,取决于与l,p,k相关的值。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Asymptotic behavior of unbounded radially symmetric solutions of semilinear degerate elliptic equations.
半线性退化椭圆方程的无界径向对称解的渐近行为。
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Yoshiyuki Hino;Satoru Murakami;Kenji Maruo
- 通讯作者:Kenji Maruo
Optimal Rate of Convergence of the Bence-Merriman-Osher Algorithm for Motion by Mean Curvature
- DOI:10.1137/04061862x
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:K. Ishii
- 通讯作者:K. Ishii
Non-existence of non radially symmetric viscosity solutions to semilinear degerate elliptic equations with radially symmetric cofficents in R^2.
R^2 中具有径向对称坐标的半线性退化椭圆方程不存在非径向对称粘度解。
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Hiroki Sato;C.Li;M.Oichi;Sin-Ei Takahasi;Kenji Maruo
- 通讯作者:Kenji Maruo
Non-existence of non radically symmetric viscosity solutions to semilinear degerate elliptic equations with radically symmetric coefficients in R2.
R2 中具有激进对称系数的半线性退化椭圆方程不存在非激进对称粘度解。
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Kenji;Maruo
- 通讯作者:Maruo
Method of the distance function to the Bence-Merriman-Osher algorithm for motion by mean curvature
Bence-Merriman-Osher 平均曲率运动算法的距离函数方法
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Yoko GOTO;Katsuyuki ISHII;Takayoshi OGAWA
- 通讯作者:Takayoshi OGAWA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARUO Kenji其他文献
MARUO Kenji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARUO Kenji', 18)}}的其他基金
Research in viscosity solutions using the method of Functional Analysis.
使用泛函分析方法研究粘度解决方案。
- 批准号:
10640169 - 财政年份:1998
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On symmetric and radial viscosity solutions for elliptic partial differential equation.
椭圆偏微分方程的对称和径向粘度解。
- 批准号:
09640187 - 财政年份:1997
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Study on the threshold and the structure of solutions to chemotaxis systems with logarithmic sensitivity functions
对数敏感函数趋化系统解的阈值和结构研究
- 批准号:
23K03190 - 财政年份:2023
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the global structure of solutions and their stability for nonlocal boundary value problems by using elliptic functions
利用椭圆函数研究非局部边值问题解的全局结构及其稳定性
- 批准号:
19K03593 - 财政年份:2019
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Global structure of solutions for differential equations of singular perturbation type and exact WKB analysis
奇异摄动型微分方程解的全局结构及精确WKB分析
- 批准号:
19H01794 - 财政年份:2019
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New developments in the structure of solutions to Chemotaxis systems
趋化系统解决方案结构的新发展
- 批准号:
19K14576 - 财政年份:2019
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Global / Geometric structure of solutions to elliptic PDE's via higher-order information of associated variational functionals
通过相关变分泛函的高阶信息实现椭圆偏微分方程解的全局/几何结构
- 批准号:
15H03631 - 财政年份:2015
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigation on the structure of solutions to elliptic partial differential equations on a non-flat space
非平坦空间上椭圆偏微分方程解的结构研究
- 批准号:
15K04965 - 财政年份:2015
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of structure of solutions to Schrodinger equation from quantum-fluid point of view
从量子流体角度研究薛定谔方程解的结构
- 批准号:
24740108 - 财政年份:2012
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Structure of solutions to the systems of nonlinear hyperbolic partial differential equations arising in fluid dynamics and conservation laws for phase transition dynamics
流体动力学中出现的非线性双曲偏微分方程组的解的结构和相变动力学守恒定律
- 批准号:
23540250 - 财政年份:2011
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Singularity of solutions for nonlinear partial differential equations of parabolic type and structure of solutions for the stationary problems
抛物型非线性偏微分方程解的奇异性和平稳问题解的结构
- 批准号:
23540244 - 财政年份:2011
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




