Efficient High-Order Methods for Solution of Hyperbolic Problems
求解双曲问题的高效高阶方法
基本信息
- 批准号:RGPIN-2017-05851
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Physical processes around us, for example the movement of weather fronts, can be described using mathematical objects called partial differential equations. These equations are also used by engineers in developing new products or improving existing ones; for example they can be used to calculate lift and drag on an airplane wing. Such equations are too complex to be solved exactly, so we employ numerical methods to solve them approximately. ***The aim of this proposal is the development, analysis and implementation of the numerical method called the discontinuous Galerkin (DG) method. We propose to work on a better mathematical understanding of the DG method when applied to hyperbolic conservation laws and to make it more efficient and robust. The DG method is highly accurate in right conditions but might require more computational resources than other methods. We seek to understand why exactly it is so much more accurate by analyzing its dispersive and dissipative properties on unstructured computational meshes in two- and three-dimensional spaces. With this understanding, we will derive new methods that might have a better trade-off in terms of cost and accuracy, especially when applied to problems that develop shock waves.***We will also work on components of the scheme such as new stabilization techniques, as well as error estimation and adaptive techniques. These are needed to make the method more efficient and more suitable for practical applications. Estimation of the error that the scheme commits is needed in order to produce an accurate solution and to distribute computational resources in the most advantageous way. Stabilization techniques are used to suppress non-physical oscillations in the numerical solutions near discontinuities. Absence of a robust method of scheme stabilization is one of the main issues to making preventing the scheme from attaining its full potential.***The expected result of this proposal is the advancement of the field of numerical analysis. We also expect that the developed algorithms and approaches will lead to faster and more efficient computations with applications to compressible flow problems.
我们周围的物理过程,例如天气锋的运动,可以用称为偏微分方程的数学对象来描述。这些方程也被工程师用于开发新产品或改进现有产品;例如,它们可以用来计算飞机机翼的升力和阻力。这些方程太复杂,无法精确求解,因此我们采用数值方法近似求解。* 本提案的目的是开发、分析和实施称为不连续Galerkin(DG)方法的数值方法。 我们建议在DG方法应用于双曲守恒律时,更好地理解数学,使其更有效和鲁棒。 DG方法在正确的条件下是高度准确的,但可能需要比其他方法更多的计算资源。我们试图理解为什么它是如此准确,通过分析其色散和耗散特性的非结构化计算网格在二维和三维空间。有了这种理解,我们将得出新的方法,这些方法可能在成本和精度方面有更好的权衡,特别是当应用于产生冲击波的问题时。我们还将致力于该计划的组成部分,如新的稳定技术,以及误差估计和自适应技术。这些都需要使该方法更有效,更适合于实际应用。为了产生精确的解并以最有利的方式分配计算资源,需要估计该方案所犯的误差。稳定化技术被用来抑制非物理振荡的数值解附近的间断。缺乏一种稳健的方案稳定方法是阻碍该方案充分发挥潜力的主要问题之一。这一建议的预期结果是数值分析领域的进步。我们还希望,开发的算法和方法将导致更快,更有效的计算与应用程序的可压缩流问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krivodonova, Lilia其他文献
Interpolation of two-dimensional curves with Euler spirals
- DOI:
10.1016/j.cam.2013.11.009 - 发表时间:
2014-05-01 - 期刊:
- 影响因子:2.4
- 作者:
Connor, Dale;Krivodonova, Lilia - 通讯作者:
Krivodonova, Lilia
Krivodonova, Lilia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krivodonova, Lilia', 18)}}的其他基金
Efficient High-Order Methods for Solution of Hyperbolic Problems
求解双曲问题的高效高阶方法
- 批准号:
RGPIN-2017-05851 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Efficient High-Order Methods for Solution of Hyperbolic Problems
求解双曲问题的高效高阶方法
- 批准号:
RGPIN-2017-05851 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Efficient High-Order Methods for Solution of Hyperbolic Problems
求解双曲问题的高效高阶方法
- 批准号:
RGPIN-2017-05851 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Efficient High-Order Methods for Solution of Hyperbolic Problems
求解双曲问题的高效高阶方法
- 批准号:
RGPIN-2017-05851 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Discontinuous Galerkin Methods for Solution of Hyperbolic Conservation Laws on Cartesian Grids
笛卡尔网格上双曲守恒律求解的间断伽辽金法
- 批准号:
341373-2013 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Discontinuous Galerkin Methods for Solution of Hyperbolic Conservation Laws on Cartesian Grids
笛卡尔网格上双曲守恒律求解的间断伽辽金法
- 批准号:
341373-2013 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Discontinuous Galerkin Methods for Solution of Hyperbolic Conservation Laws on Cartesian Grids
笛卡尔网格上双曲守恒律求解的间断伽辽金法
- 批准号:
341373-2013 - 财政年份:2013
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
High-order adaptive methods for hyperbolic conservation laws
双曲守恒定律的高阶自适应方法
- 批准号:
341373-2007 - 财政年份:2012
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
High-order adaptive methods for hyperbolic conservation laws
双曲守恒定律的高阶自适应方法
- 批准号:
341373-2007 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
High-order adaptive methods for hyperbolic conservation laws
双曲守恒定律的高阶自适应方法
- 批准号:
341373-2007 - 财政年份:2010
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于Order的SIS/LWE变体问题及其应用
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
Poisson Order, Morita 理论,群作用及相关课题
- 批准号:19ZR1434600
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Developing High Order Stable and Efficient Methods for Long Time Simulations of Gravitational Waveforms
开发高阶稳定且有效的方法来长时间模拟引力波形
- 批准号:
2309609 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Efficient Conservative High-Order Solution-Flux Domain Decomposition Methods and Local Refinements for Flows in Porous Media and Electromagnetics
多孔介质和电磁学中流动的高效保守高阶解-通量域分解方法和局部细化
- 批准号:
RGPIN-2022-04571 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Efficient High-Order Methods for Solution of Hyperbolic Problems
求解双曲问题的高效高阶方法
- 批准号:
RGPIN-2017-05851 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Efficient High-Order Methods for Solution of Hyperbolic Problems
求解双曲问题的高效高阶方法
- 批准号:
RGPIN-2017-05851 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Efficient High-Order Methods for Solution of Hyperbolic Problems
求解双曲问题的高效高阶方法
- 批准号:
RGPIN-2017-05851 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
High Order and Efficient Numerical Methods for Simulating Electromagnetic Phenomena
模拟电磁现象的高阶高效数值方法
- 批准号:
1802143 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Efficient High-Order Methods for Solution of Hyperbolic Problems
求解双曲问题的高效高阶方法
- 批准号:
RGPIN-2017-05851 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
High Order and Efficient Numerical Methods for Simulating Electromagnetic Phenomena
模拟电磁现象的高阶高效数值方法
- 批准号:
1619713 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
New approaches to the construction of efficient high order time integration methods in the context of DG space discretisations for viscous and inviscid fluid flow
在粘性和非粘性流体流动的 DG 空间离散化背景下构建高效高阶时间积分方法的新方法
- 批准号:
288967378 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Research Grants
Robust and Efficient High Order Methods for Time Dependent Problems
针对瞬态问题的稳健且高效的高阶方法
- 批准号:
1522593 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant