Accurate pose estimation and exercise recognition for next generation wearable systems for athletic training

用于运动训练的下一代可穿戴系统的准确姿势估计和运动识别

基本信息

  • 批准号:
    505508-2016
  • 负责人:
  • 金额:
    $ 4.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Collaborative Research and Development Grants
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

In the last 5 years, there has been a rapid expansion in the use of wearable systems for exercise and activity monitoring, including such popular systems as the FitBit and Garmin vivo. These systems enable the user to track their exercise activity, log and monitor their activity and performance over time, as well as engage in social games such as virtual team workouts and challenges. However, the majority of these systems can only measure a very rough estimate of overall activity, and are unable to provide more detailed measurement and assessment of specific workout activities to provide targeted feedback. In this proposal, our objective is to develop and validate the next generation wearable system for detailed and accurate exercise activity tracking. The developed system will accurately measure the body position of the athlete as they are performing their training exercises, and provide detailed feedback to the athlete and their coach. This will allow athletes and coaches to carefully track and analyse the athlete's form, performance and progress. Such detailed tracking and immediate feedback will help to reduce and prevent injury, improve performance and improve the quality of training. The project is a collaboration between PUSH Inc., a Canadian start-up based in Toronto, Ontario, focused on the development of wearable fitness devices for athletic training, and researchers at the University of Waterloo. The developed system and technology will be transferred to PUSH to enable them to bring to market the next generation of wearable systems for athletic activity measurement and monitoring.
在过去的5年里,用于运动和活动监测的可穿戴系统的使用迅速扩展,包括FitBit和Garmin vivo等流行系统。 这些系统使用户能够跟踪他们的锻炼活动,记录和监控他们的活动和表现,以及参与社交游戏,如虚拟团队锻炼和挑战。 然而,这些系统中的大多数只能测量总体活动的非常粗略的估计,并且不能提供具体锻炼活动的更详细的测量和评估以提供有针对性的反馈。 在这项提案中,我们的目标是开发和验证下一代可穿戴系统,以进行详细和准确的运动活动跟踪。 开发的系统将准确地测量运动员在进行训练时的身体位置,并向运动员及其教练提供详细的反馈。 这将使运动员和教练能够仔细跟踪和分析运动员的形式,表现和进步。 这种详细的跟踪和即时反馈将有助于减少和防止伤害,提高性能和提高训练质量。 该项目是PUSH Inc.,一家位于安大略省多伦多的加拿大初创企业,专注于开发用于运动训练的可穿戴健身设备,以及滑铁卢大学的研究人员。 开发的系统和技术将转移到PUSH,使他们能够将下一代可穿戴系统推向市场,用于运动活动测量和监测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kulic, Danica其他文献

Kulic, Danica的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kulic, Danica', 18)}}的其他基金

Shared decision making and autonomy in human-robot teams
人机团队的共享决策和自主权
  • 批准号:
    491524-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 4.11万
  • 项目类别:
    Collaborative Research and Development Grants
Shared Decision Making and Progressive Automation for Manufacturing Assembly
制造装配的共享决策和渐进式自动化
  • 批准号:
    493922-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 4.11万
  • 项目类别:
    Strategic Projects - Group
Accurate pose estimation and exercise recognition for next generation wearable systems for athletic training
用于运动训练的下一代可穿戴系统的准确姿势估计和运动识别
  • 批准号:
    505508-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 4.11万
  • 项目类别:
    Collaborative Research and Development Grants
Automated measurement and assessment of performance during vestibulo ocular reflex rehabilitation following concussion
脑震荡后前庭眼反射康复过程中的自动测量和性能评估
  • 批准号:
    513899-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 4.11万
  • 项目类别:
    Engage Grants Program
Shared decision making and autonomy in human-robot teams
人机团队的共享决策和自主权
  • 批准号:
    491524-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 4.11万
  • 项目类别:
    Collaborative Research and Development Grants
Shared decision making and autonomy in human-robot teams
人机团队的共享决策和自主权
  • 批准号:
    491524-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 4.11万
  • 项目类别:
    Collaborative Research and Development Grants
Automated segmentation and activity identification for intelligent vehicular systems
智能车辆系统的自动分割和活动识别
  • 批准号:
    446913-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 4.11万
  • 项目类别:
    Collaborative Research and Development Grants
Automated exercise classification for wearable-sensor based weight training performance monitoring
基于可穿戴传感器的重量训练表现监控的自动运动分类
  • 批准号:
    490655-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 4.11万
  • 项目类别:
    Engage Grants Program
Temporal segmentation of exercise movements from wearable sensors
可穿戴传感器对运动动作进行时间分割
  • 批准号:
    485294-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 4.11万
  • 项目类别:
    Engage Grants Program
Automated rehabilitation system for knee and hip rehabilitation
用于膝关节和髋关节康复的自动化康复系统
  • 批准号:
    433802-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 4.11万
  • 项目类别:
    Collaborative Research and Development Grants

相似海外基金

Collaborative Research: Quantifying sign reduction in sign language using human pose estimation
合作研究:使用人体姿势估计量化手语中的符号减少
  • 批准号:
    2234787
  • 财政年份:
    2023
  • 资助金额:
    $ 4.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantifying sign reduction in sign language using human pose estimation
合作研究:使用人体姿势估计量化手语中的符号减少
  • 批准号:
    2234786
  • 财政年份:
    2023
  • 资助金额:
    $ 4.11万
  • 项目类别:
    Standard Grant
Advanced methods for depth-based human pose estimation and motion analysis: application to vital signs monitoring in the intensive care unit
基于深度的人体姿势估计和运动分析的先进方法:应用于重症监护病房的生命体征监测
  • 批准号:
    RGPIN-2020-06695
  • 财政年份:
    2022
  • 资助金额:
    $ 4.11万
  • 项目类别:
    Discovery Grants Program - Individual
Deep Learning for Video-based Monitoring in Parkinson's Disease: Hand Pose Estimation and Tracking
基于视频的帕金森病监测深度学习:手势估计和跟踪
  • 批准号:
    574212-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 4.11万
  • 项目类别:
    University Undergraduate Student Research Awards
Dense pose estimation for soft-tissue tracking in mice.
用于小鼠软组织跟踪的密集姿势估计。
  • 批准号:
    575549-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 4.11万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
CRII: HCC: 3D Hand & Full-Body Pose Estimation in Telehealth for Children with Autism
CRII:HCC:3D 手
  • 批准号:
    2153249
  • 财政年份:
    2022
  • 资助金额:
    $ 4.11万
  • 项目类别:
    Standard Grant
AstroSLAM - A Robust and Reliable Visual Localization and Pose Estimation Architecture for Space Robots in Orbit
AstroSLAM - 用于轨道空间机器人的稳健可靠的视觉定位和姿态估计架构
  • 批准号:
    2101250
  • 财政年份:
    2021
  • 资助金额:
    $ 4.11万
  • 项目类别:
    Standard Grant
Advanced methods for depth-based human pose estimation and motion analysis: application to vital signs monitoring in the intensive care unit
基于深度的人体姿势估计和运动分析的先进方法:应用于重症监护病房的生命体征监测
  • 批准号:
    RGPIN-2020-06695
  • 财政年份:
    2021
  • 资助金额:
    $ 4.11万
  • 项目类别:
    Discovery Grants Program - Individual
Development of AI-based Multi-action Detection System for multiple patients using Day-Night Omnidirectional Cameras
使用日夜全向摄像机开发基于人工智能的多位患者多动作检测系统
  • 批准号:
    21K18109
  • 财政年份:
    2021
  • 资助金额:
    $ 4.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exteme Underwater Environment Sensing Using Acoustic Camera
使用声学相机进行极端水下环境传感
  • 批准号:
    21J12362
  • 财政年份:
    2021
  • 资助金额:
    $ 4.11万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了