AstroSLAM - A Robust and Reliable Visual Localization and Pose Estimation Architecture for Space Robots in Orbit

AstroSLAM - 用于轨道空间机器人的稳健可靠的视觉定位和姿态估计架构

基本信息

  • 批准号:
    2101250
  • 负责人:
  • 金额:
    $ 76.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Space robotics is essential for all current and future space exploration and utilization missions. Advanced space-robotic technologies will enable in-orbit servicing and refueling of satellites, and will support more elaborate missions such as in-orbit large flexible structure assembly, debris removal, inspection, hardware upgrades, etc. For instance, current communication satellites have a typical lifetime of 10 to 15 years, at which point an otherwise perfectly functioning satellite runs out of propellant and is decommissioned. Refueling the satellite can add several years of additional lifetime and revenue. Future envisioned missions to the Moon, Mars and beyond will also require advanced robotic capabilities in orbit. Many future exploration missions envision integrated teams of astronauts and free flying “co-robots” that support or monitor the human crew activities. What is currently missing from these missions is the ability to provide full 4D (space-time) situational awareness using autonomous on-board perception and planning capabilities. Recent technological breakthroughs for ground robots pave the way for similar advancements in robotic in-orbit operations to enable routine robotic operations in space in the not-so-distant future. These include perception and planning algorithms, machine learning based pattern recognition, autonomy, new computer hardware architectures, human-machine interfaces, and dexterous manipulation, among many others. The outcome of the research will be the ability of astronauts and space robots to work together to enable inspection, monitoring, and classification of resident space objects; maneuvering and proximity operations and docking; salvage and retrieval of malfunctioning or tumbling spacecraft; and servicing, construction, repair, upgrade, and refueling missions of assets in orbit.This project will develop novel visual perception, localization, mapping, and planning algorithms that will enable new capabilities in terms of situational awareness for space robots that can work alone or alongside astronauts in orbit. The research plan includes the development of novel automated feature extraction and matching algorithms using deep neural network architectures, adapted to the challenging imaging conditions (collimated light, high contrast, lack of atmospheric scattering, paucity of distinctive features, etc.) and orbital motion constraints imposed in space. This will enable robust and reliable relative pose estimation, 3D shape reconstruction and characterization of space objects. Novel optimal planning and prediction methods based on a factor-graph optimization framework will be matched to these new perception capabilities to account for fuel usage and orbital motion constraints. The experimental validation of the theory will take place at the Georgia Tech Autonomous Spacecraft Testing of Robotic Operations in Space platform, a state-of-the-art spacecraft simulation platform. The research will involve both graduate and undergraduate students. The results of this research will be disseminated to the community by journal and conference publications, organization of invited workshops and seminar presentations, and by targeted exposure (press releases, interviews) to popular media.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
太空机器人对于当前和未来的所有太空探索和利用任务至关重要。先进的空间机器人技术将使卫星在轨维修和加油成为可能,并支持更复杂的任务,如在轨大型柔性结构组装、碎片清除、检查、硬件升级等。例如,当前通信卫星的典型寿命为10至15年,此时,原本功能良好的卫星将耗尽推进剂并退役。为卫星补充燃料可以增加数年的使用寿命和收入。未来设想的月球、火星及更远距离的任务也将需要先进的轨道机器人能力。许多未来的探索任务都设想由宇航员和自由飞行的“协作机器人”组成的综合团队来支持或监控人类机组人员的活动。目前这些任务缺少的是利用自主机载感知和规划功能提供完整 4D(时空)态势感知的能力。地面机器人最近的技术突破为机器人在轨操作的类似进步铺平了道路,从而在不远的将来实现太空中的常规机器人操作。其中包括感知和规划算法、基于机器学习的模式识别、自主性、新的计算机硬件架构、人机界面和灵巧操作等。该研究的成果将是宇航员和太空机器人能够协同工作,对驻留空间物体进行检查、监测和分类;机动和邻近操作以及对接;打捞和回收发生故障或翻滚的航天器;该项目将开发新颖的视觉感知、定位、测绘和规划算法,为能够在轨道上单独工作或与宇航员一起工作的太空机器人提供态势感知方面的新功能。该研究计划包括使用深度神经网络架构开发新颖的自动特征提取和匹配算法,适应具有挑战性的成像条件(准直光、高对比度、缺乏大气散射、缺乏独特特征等)和空间中施加的轨道运动约束。这将实现稳健可靠的相对位姿估计、3D 形状重建和空间物体的表征。 基于因子图优化框架的新颖的优化规划和预测方法将与这些新的感知能力相匹配,以考虑燃料使用和轨道运动约束。 该理论的实验验证将在佐治亚理工学院的空间机器人操作自主航天器测试平台进行,该平台是最先进的航天器模拟平台。该研究将涉及研究生和本科生。这项研究的结果将通过期刊和会议出版物、组织受邀研讨会和研讨会演示以及通过大众媒体的有针对性的曝光(新闻稿、采访)向社会传播。该项目得到了机器人学跨部门基础研究计划的支持,该计划由工程理事会 (ENG) 和计算机与信息科学与工程理事会 (CISE) 共同管理和资助。该奖项反映了 NSF 的法定使命 通过使用基金会的智力优点和更广泛的影响审查标准进行评估,并被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AstroVision: Towards Autonomous Feature Detection and Description for Missions to Small Bodies Using Deep Learning
  • DOI:
    10.1016/j.actaastro.2023.01.009
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Travis Driver;K. Skinner;Mehregan Dor;P. Tsiotras
  • 通讯作者:
    Travis Driver;K. Skinner;Mehregan Dor;P. Tsiotras
Simultaneous Control and Trajectory Estimation for Collision Avoidance of Autonomous Robotic Spacecraft Systems
自主机器人航天器系统避碰的同步控制和轨迹估计
Spacecraft-Mounted Robotics
航天器安装的机器人
  • DOI:
    10.1146/annurev-control-062122-082114
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tsiotras, Panagiotis;King-Smith, Matthew;Ticozzi, Lorenzo
  • 通讯作者:
    Ticozzi, Lorenzo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Panagiotis Tsiotras其他文献

Communication-Aware Map Compression for Online Path-Planning
用于在线路径规划的通信感知地图压缩
  • DOI:
    10.48550/arxiv.2309.13451
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Evangelos Psomiadis;Dipankar Maity;Panagiotis Tsiotras
  • 通讯作者:
    Panagiotis Tsiotras
Multi-Parameter Dependent Lyapunov Functions for the Stability Analysis of Parameter-Dependent LTI Systems
用于参数相关 LTI 系统稳定性分析的多参数相关 Lyapunov 函数
Time-Optimal Control of Axisymmetric Rigid Spacecraft Using Two Controls
轴对称刚性航天器的两种控制的时间最优控制
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haijun Shen;Panagiotis Tsiotras
  • 通讯作者:
    Panagiotis Tsiotras
Zero-Sum Games Between Large-Population Heterogeneous Teams: A Reachability-based Analysis under Mean-Field Sharing
大规模异构团队之间的零和博弈:平均场共享下基于可达性的分析
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yue Guan;Mohammad Afshari;Panagiotis Tsiotras
  • 通讯作者:
    Panagiotis Tsiotras
Stabilization and Tracking of Underactuated Axisymmetric Spacecraft with Bounded Control
  • DOI:
    10.1016/s1474-6670(17)40326-0
  • 发表时间:
    1998-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Panagiotis Tsiotras;Jihao Luo
  • 通讯作者:
    Jihao Luo

Panagiotis Tsiotras的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Panagiotis Tsiotras', 18)}}的其他基金

CPS: Medium: Learning-Enabled Assistive Driving: Formal Assurances during Operation and Training
CPS:中:支持学习的辅助驾驶:操作和培训期间的正式保证
  • 批准号:
    2219755
  • 财政年份:
    2022
  • 资助金额:
    $ 76.09万
  • 项目类别:
    Standard Grant
RI: Small: Robust Autonomy for Uncertain Systems using Randomized Trees
RI:小型:使用随机树实现不确定系统的鲁棒自治
  • 批准号:
    2008686
  • 财政年份:
    2020
  • 资助金额:
    $ 76.09万
  • 项目类别:
    Continuing Grant
S&AS: FND: Decision-Making for Autonomous Systems with Limited Resources
S
  • 批准号:
    1849130
  • 财政年份:
    2019
  • 资助金额:
    $ 76.09万
  • 项目类别:
    Standard Grant
Safe, Resilient and Efficient Operation of Autonomous Aerial and Ground Vehicles
自主空中和地面车辆的安全、弹性和高效运行
  • 批准号:
    1662542
  • 财政年份:
    2017
  • 资助金额:
    $ 76.09万
  • 项目类别:
    Standard Grant
RI: Small: Incremental Sampling-Based Algorithms and Stochastic Optimal Control on Random Graphs
RI:小:基于增量采样的算法和随机图上的随机最优控制
  • 批准号:
    1617630
  • 财政年份:
    2016
  • 资助金额:
    $ 76.09万
  • 项目类别:
    Continuing Grant
CPS: Synergy: Collaborative Research: Adaptive Intelligence for Cyber-Physical Automotive Active Safety - System Design and Evaluation
CPS:协同:协作研究:网络物理汽车主动安全的自适应智能 - 系统设计和评估
  • 批准号:
    1544814
  • 财政年份:
    2015
  • 资助金额:
    $ 76.09万
  • 项目类别:
    Standard Grant
NRI: Information-Theoretic Trajectory Optimization for Motion Planning and Control with Applications to Space Proximity Operations
NRI:运动规划和控制的信息理论轨迹优化及其在空间邻近操作中的应用
  • 批准号:
    1426945
  • 财政年份:
    2014
  • 资助金额:
    $ 76.09万
  • 项目类别:
    Standard Grant
Environment-Agent Interaction in Autonomous Networked Teams with Applications to Minimum-Time Coordinated Control of Multi-Agent Systems
自治网络团队中的环境-智能体交互及其在多智能体系统最短时间协调控制中的应用
  • 批准号:
    1160780
  • 财政年份:
    2012
  • 资助金额:
    $ 76.09万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Advanced Driver Assistance and Active Safety Systems through Driver's Controllability Augmentation and Adaptation
GOALI/合作研究:通过驾驶员可控性增强和适应实现高级驾驶员辅助和主动安全系统
  • 批准号:
    1234286
  • 财政年份:
    2012
  • 资助金额:
    $ 76.09万
  • 项目类别:
    Standard Grant
Multiscale, Beamlet-Based Data Processing for the Solution of Shortest-Path Problems with Applications to Embedded Vehicle Autonomy
用于解决嵌入式车辆自主应用中最短路径问题的多尺度、基于子束的数据处理
  • 批准号:
    0856565
  • 财政年份:
    2009
  • 资助金额:
    $ 76.09万
  • 项目类别:
    Standard Grant

相似国自然基金

供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
  • 批准号:
    60085001
  • 批准年份:
    2000
  • 资助金额:
    14.0 万元
  • 项目类别:
    专项基金项目
ROBUST语音识别方法的研究
  • 批准号:
    69075008
  • 批准年份:
    1990
  • 资助金额:
    3.5 万元
  • 项目类别:
    面上项目
改进型ROBUST序贯检测技术
  • 批准号:
    68671030
  • 批准年份:
    1986
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2327702
  • 财政年份:
    2023
  • 资助金额:
    $ 76.09万
  • 项目类别:
    Standard Grant
Explainable AI recommendations for infectious disease management: providing clear, robust, and reliable communication to users
针对传染病管理的可解释人工智能建议:为用户提供清晰、稳健和可靠的沟通
  • 批准号:
    10073509
  • 财政年份:
    2023
  • 资助金额:
    $ 76.09万
  • 项目类别:
    Grant for R&D
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2133019
  • 财政年份:
    2022
  • 资助金额:
    $ 76.09万
  • 项目类别:
    Standard Grant
NSF/FDA SIR: Robust, Reliable, and Trustworthy Regulatory Science Tool for Stroke Recovery Assessment using Hybrid Brain-Muscle Functional Coupling Analysis
NSF/FDA SIR:使用混合脑-肌肉功能耦合分析进行中风恢复评估的稳健、可靠且值得信赖的监管科学工具
  • 批准号:
    2229697
  • 财政年份:
    2022
  • 资助金额:
    $ 76.09万
  • 项目类别:
    Standard Grant
Reliable and Robust Quantum Computing
可靠且强大的量子计算
  • 批准号:
    EP/W031485/1
  • 财政年份:
    2022
  • 资助金额:
    $ 76.09万
  • 项目类别:
    Research Grant
Reliable and Robust Quantum Computing
可靠且强大的量子计算
  • 批准号:
    EP/W032104/1
  • 财政年份:
    2022
  • 资助金额:
    $ 76.09万
  • 项目类别:
    Research Grant
Reliable and robust causal inference approaches for effective connectivity research with fMRI data
可靠且稳健的因果推理方法,可利用功能磁共振成像数据进行有效的连通性研究
  • 批准号:
    10709066
  • 财政年份:
    2022
  • 资助金额:
    $ 76.09万
  • 项目类别:
Reliable and Robust Quantum Computing
可靠且强大的量子计算
  • 批准号:
    EP/W03221X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 76.09万
  • 项目类别:
    Research Grant
Robust and Reliable Mathematical Models for Biomolecular Data via Differential Geometry and Graph Theory
通过微分几何和图论建立稳健可靠的生物分子数据数学模型
  • 批准号:
    2151802
  • 财政年份:
    2022
  • 资助金额:
    $ 76.09万
  • 项目类别:
    Standard Grant
Reliable and Robust Quantum Computing
可靠且强大的量子计算
  • 批准号:
    EP/W032635/1
  • 财政年份:
    2022
  • 资助金额:
    $ 76.09万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了