Surface reflectance acquisition for finished materials - phase 2
成品材料的表面反射率采集 - 第 2 阶段
基本信息
- 批准号:522789-2018
- 负责人:
- 金额:$ 0.79万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Plus Grants Program
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Accurately representing the appearance of materials is of paramount importance in many applications. For**instance, finished materials (e.g. hardwood, melamine, etc.) manufacturers must convincingly convey the "look**and feel" of their products to potential customers, which must currently be done with physical samples.**Replacing those physical samples with immersive virtual tours would be greatly beneficial for demonstrations**of interior design, architecture, real estate projects and the like. However, in order for those virtual tours to be**convincing, they must accurately replicate the appearance of the various materials present in the premises.**While systems for capturing rich appearance models exist and have been proposed in the literature, many of the**solutions are either too complicated or restricted to very small material samples.**In this project, we will develop a data-driven capture approach that will overcome these limitations. By**leveraging the current database through deep learning, we will extrapolate the appearance of new materials**using very few images captured in an uncontrolled environment using a single consumer camera. This will**speed up tremendously virtual catalogs updates, strengthening the industrial partner's position as a leader in**software-based visualization tools.
在许多应用中,准确地表示材料的外观是至关重要的。例如 **,成品材料(如硬木、三聚氰胺等)制造商必须令人信服地将其产品的“外观 ** 和感觉”传达给潜在客户,目前必须通过实物样品来完成。用身临其境的虚拟图尔斯之旅取代那些实物样品,将大大有利于室内设计、建筑、真实的房地产项目等的演示。然而,为了使这些虚拟的图尔斯是令人信服的,他们必须准确地复制的各种材料的外观存在的处所。虽然存在用于捕获丰富外观模型的系统,并且在文献中已经提出,但许多解决方案要么过于复杂,要么仅限于非常小的材料样本。在这个项目中,我们将开发一种数据驱动的捕获方法,以克服这些限制。通过深度学习 ** 利用当前的数据库,我们将使用单个消费相机在不受控制的环境中拍摄的极少数图像 ** 来推断新材料的外观。这将大大加快虚拟目录的更新速度,加强工业合作伙伴在基于软件的可视化工具中的领导地位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lalonde, JeanFrançois其他文献
Lalonde, JeanFrançois的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lalonde, JeanFrançois', 18)}}的其他基金
Understanding the world behind the image
了解图像背后的世界
- 批准号:
RGPIN-2020-04799 - 财政年份:2022
- 资助金额:
$ 0.79万 - 项目类别:
Discovery Grants Program - Individual
Understanding the world behind the image
了解图像背后的世界
- 批准号:
RGPIN-2020-04799 - 财政年份:2021
- 资助金额:
$ 0.79万 - 项目类别:
Discovery Grants Program - Individual
Learning to light and relight images
学习照亮和重新照亮图像
- 批准号:
557208-2020 - 财政年份:2021
- 资助金额:
$ 0.79万 - 项目类别:
Alliance Grants
Learning to reason from uncalibrated wide angle images
学习从未经校准的广角图像进行推理
- 批准号:
567654-2021 - 财政年份:2021
- 资助金额:
$ 0.79万 - 项目类别:
Alliance Grants
Learning to light and relight images
学习照亮和重新照亮图像
- 批准号:
557208-2020 - 财政年份:2020
- 资助金额:
$ 0.79万 - 项目类别:
Alliance Grants
Understanding the world behind the image
了解图像背后的世界
- 批准号:
RGPIN-2020-04799 - 财政年份:2020
- 资助金额:
$ 0.79万 - 项目类别:
Discovery Grants Program - Individual
Deep style transfer for 3D meshes
3D 网格的深度样式传输
- 批准号:
537961-2018 - 财政年份:2020
- 资助金额:
$ 0.79万 - 项目类别:
Collaborative Research and Development Grants
Bringing Images to Light
让图像曝光
- 批准号:
RGPIN-2014-05314 - 财政年份:2019
- 资助金额:
$ 0.79万 - 项目类别:
Discovery Grants Program - Individual
Wide-angle vision and sensing using artificial intelligence, machine learning and neural networks -- phase 2
使用人工智能、机器学习和神经网络的广角视觉和传感——第二阶段
- 批准号:
544431-2019 - 财政年份:2019
- 资助金额:
$ 0.79万 - 项目类别:
Engage Plus Grants Program
Deep style transfer for 3D meshes
3D 网格的深度样式传输
- 批准号:
537961-2018 - 财政年份:2019
- 资助金额:
$ 0.79万 - 项目类别:
Collaborative Research and Development Grants
相似海外基金
Reflectance confocal microscopy-optical coherence tomography (RCM-OCT) imaging of oral lesions: Toward an affordable device and approach for developing countries
口腔病变的反射共焦显微镜-光学相干断层扫描 (RCM-OCT) 成像:为发展中国家提供负担得起的设备和方法
- 批准号:
10735695 - 财政年份:2023
- 资助金额:
$ 0.79万 - 项目类别:
Affordable Shortwave Infrared Spectroscopy for Stroke Risk Screening in Children with Sickle Cell Disease
经济实惠的短波红外光谱仪用于镰状细胞病儿童中风风险筛查
- 批准号:
10730967 - 财政年份:2023
- 资助金额:
$ 0.79万 - 项目类别:
Noninvasive prediction of skin precancer severity using in vivo cellular imaging and deep learning algorithms.
使用体内细胞成像和深度学习算法无创预测皮肤癌前病变的严重程度。
- 批准号:
10761578 - 财政年份:2023
- 资助金额:
$ 0.79万 - 项目类别:
The Role of Neurovascular Interactions in the Development and Regulation of the Blood-Brain Barrier
神经血管相互作用在血脑屏障发育和调节中的作用
- 批准号:
10915164 - 财政年份:2023
- 资助金额:
$ 0.79万 - 项目类别:
Cellular, molecular and physical mechanisms of vitreous structural heterogeneity underlying posterior vitreous detachment
玻璃体后脱离的玻璃体结构异质性的细胞、分子和物理机制
- 批准号:
10740173 - 财政年份:2023
- 资助金额:
$ 0.79万 - 项目类别:
Relating leaf cuticular conductance to light reflectance spectra in plants
将植物叶片角质层电导率与光反射光谱联系起来
- 批准号:
574138-2022 - 财政年份:2022
- 资助金额:
$ 0.79万 - 项目类别:
University Undergraduate Student Research Awards
Optimizing singlet oxygen dosimetry for photodynamic therapy (PDT)
优化光动力治疗 (PDT) 的单线态氧剂量测定
- 批准号:
10651654 - 财政年份:2022
- 资助金额:
$ 0.79万 - 项目类别:
Differentiation of Clinical Phenotypes of Inflammatory and Neuropathic Ocular Pain Conditions with Morphologic Measures and Functional Brain Imaging
通过形态学测量和功能性脑成像区分炎症性和神经性眼痛的临床表型
- 批准号:
10585427 - 财政年份:2022
- 资助金额:
$ 0.79万 - 项目类别:
Digital soil maps using deep learning with spectral reflectance
使用深度学习和光谱反射率的数字土壤图
- 批准号:
22H02400 - 财政年份:2022
- 资助金额:
$ 0.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)