Understanding the world behind the image
了解图像背后的世界
基本信息
- 批准号:RGPIN-2020-04799
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Practical computer vision applications have, for a long time, found themselves confined to the realm of "machine vision": the image processing technologies for automatic inspection and analysis used in assembly lines. In the past decade, and in combination with the advent of very large image datasets, immense compute power and powerful deep learning algorithms, we have witnessed an emergence of computer vision in massive-scale consumer applications. For example, computers have learned to combine virtual objects into real video feeds for augmented reality, to realistically recreate the appearance of a person in a video, to safely steer autonomous cars by detecting the position and orientation of obstacles, and to robustly estimate the depth of a scene from a single image---effectively understanding the world in 3D. Despite this progress, computer vision systems suffer from one major limitation: they have trouble understanding the real world as a whole. Most techniques estimate a single component of the world (the lighting conditions, scene depth, geometry of objects, orientation of surfaces, etc.) at a time, without considering the fact that all of these components are at play when the image is formed. Indeed, images are created through a series of complex interactions between light and the geometry and reflectance of surfaces and objects in the scene. While the human eye can easily understand the combinations of these effects through millions of years of adaptation (e.g., we easily interpret that shadows are created by a bright light source being occluded), the same cannot be said of digital cameras and of algorithms operating on their images (e.g., shadows could be misinterpreted as objects). This research program will introduce novel methods for automatically understanding the 3D, lighting, and reflectance properties of scenes in a holistic manner. To do so, we will tackle the following four objectives. We will: 1) introduce new algorithms for estimating spatially-varying illumination in scenes; 2) develop a novel approach to efficiently estimate the spatially-varying reflectance properties of surfaces and scenes using a portable multi-light capture apparatus; 3) incorporate physical models of image formation for jointly estimating lighting, reflectance, and geometry from a single image to push the state of the art in holistic scene understanding; and 4) capture new databases of real-world lighting and surface reflectance to faithfully digitize and recreate the world at scale. In addition to the applications above, our proposed activities will also impact other fields such as computer graphics, video gaming, motion pictures, virtual and augmented reality, and artificial intelligence. This research program at Université Laval will contribute to maintain and even expand Canada's relevance in these fields via its key technical contributions, and by training highly qualified personnel in its development.
长期以来,实际的计算机视觉应用一直局限于“机器视觉”领域:用于自动检测和分析的图像处理技术。在过去的十年中,随着超大型图像数据集、强大的计算能力和强大的深度学习算法的出现,我们见证了计算机视觉在大规模消费者应用中的出现。例如,计算机已经学会了将联合收割机的虚拟物体组合成增强现实的真实的视频,逼真地再现视频中人的外观,通过检测障碍物的位置和方向来安全地驾驶自动汽车,以及从单个图像中稳健地估计场景的深度--有效地理解3D世界。 尽管取得了这些进展,但计算机视觉系统仍受到一个主要限制:它们很难理解整个真实的世界。大多数技术估计世界的单个组件(照明条件,场景深度,对象的几何形状,表面的方向等)。而不考虑当图像形成时所有这些成分都在起作用的事实。事实上,图像是通过光与场景中表面和物体的几何形状和反射率之间的一系列复杂相互作用创建的。虽然人眼可以很容易地理解这些影响的组合,通过数百万年的适应(例如,我们很容易理解阴影是由被遮挡的亮光源产生的),对于数字照相机和对它们的图像进行操作的算法则不能这样说(例如,阴影可能被误解为对象)。该研究计划将介绍以整体方式自动理解场景的3D,照明和反射特性的新方法。为此,我们将努力实现以下四个目标。我们将:1)引入用于估计场景中的空间变化的照明的新算法; 2)开发使用便携式多光捕获设备来有效地估计表面和场景的空间变化的反射率属性的新颖方法; 3)结合图像形成的物理模型以用于从单个图像联合估计照明、反射率和几何形状,以推动整体场景理解的现有技术;以及4)捕获真实世界照明和表面反射率的新数据库,以忠实地再现和按比例重建世界。 除了上述应用外,我们的活动还将影响其他领域,如计算机图形,视频游戏,电影,虚拟和增强现实以及人工智能。拉瓦尔大学的这项研究计划将有助于通过其关键技术贡献,并通过培训高素质的人才来维持甚至扩大加拿大在这些领域的相关性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lalonde, JeanFrançois其他文献
Lalonde, JeanFrançois的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lalonde, JeanFrançois', 18)}}的其他基金
Understanding the world behind the image
了解图像背后的世界
- 批准号:
RGPIN-2020-04799 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Learning to light and relight images
学习照亮和重新照亮图像
- 批准号:
557208-2020 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Alliance Grants
Learning to reason from uncalibrated wide angle images
学习从未经校准的广角图像进行推理
- 批准号:
567654-2021 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Alliance Grants
Learning to light and relight images
学习照亮和重新照亮图像
- 批准号:
557208-2020 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Alliance Grants
Understanding the world behind the image
了解图像背后的世界
- 批准号:
RGPIN-2020-04799 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Deep style transfer for 3D meshes
3D 网格的深度样式传输
- 批准号:
537961-2018 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Research and Development Grants
Bringing Images to Light
让图像曝光
- 批准号:
RGPIN-2014-05314 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Wide-angle vision and sensing using artificial intelligence, machine learning and neural networks -- phase 2
使用人工智能、机器学习和神经网络的广角视觉和传感——第二阶段
- 批准号:
544431-2019 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Engage Plus Grants Program
Deep style transfer for 3D meshes
3D 网格的深度样式传输
- 批准号:
537961-2018 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Research and Development Grants
Inferring 3D information from a monocular camera
从单目相机推断 3D 信息
- 批准号:
524235-2018 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
国际心脏研究会第二十三届世界大会(XXIII World Congress ISHR)
- 批准号:81942001
- 批准年份:2019
- 资助金额:10 万元
- 项目类别:专项基金项目
相对论中的薄球壳模型及其在宇宙论中的应用
- 批准号:10605006
- 批准年份:2006
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
利用结构特性分析和控制动态布尔网络
- 批准号:60574067
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:面上项目
探讨复杂动力网络的同步能力和鲁棒性
- 批准号:60304017
- 批准年份:2003
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326020 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326021 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
- 批准号:
2349230 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
Conference: 2024 Post-Transcriptional Gene Regulation Gordon Research Conference and Seminar: The Versatility of RNA in the Living World
会议:2024年转录后基因调控戈登研究会议及研讨会:RNA在生活世界中的多功能性
- 批准号:
2422760 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
Maintaining Human Expertise in an AI-driven World
在人工智能驱动的世界中保持人类的专业知识
- 批准号:
DE240100269 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Early Career Researcher Award
Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
- 批准号:
24K20733 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
World in your hand: Investigating the underlying mechanism of thermal material recognition and its interaction with multisensory information
手中的世界:研究热材料识别的基本机制及其与多感官信息的相互作用
- 批准号:
23K24934 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Priceworx Ultimate+: A world-first AI-driven material cost forecaster for construction project management.
Priceworx Ultimate:世界上第一个用于建筑项目管理的人工智能驱动的材料成本预测器。
- 批准号:
10099966 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative R&D
Accelerated carbon dioxide release from sedimentary rocks in a warming world
在变暖的世界中沉积岩加速二氧化碳释放
- 批准号:
NE/Y000838/1 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Research Grant