Fundamental tools for stochastic simulation
随机模拟的基本工具
基本信息
- 批准号:RGPIN-2018-05795
- 负责人:
- 金额:$ 4.66万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research program concerns the development and study of fundamental tools (mathematical, statistical, and computational) for modeling, simulating, and optimizing systems that involve uncertainty. The demand for improved simulation tools has increased tremendously in recent years. Stochastic (Monte Carlo) simulation is used heavily in science, engineering, management, and several other areas. Simulation is often the only practical tool to deal with realistic models of complex systems, which are typically dynamic, stochastic, and nonlinear. Stochastic simulation and optimization have been key ingredients in the spectacular recent progress in machine learning, for example. ******My goal in this context is to contribute new ideas and methods to the Monte Carlo tool set, and improve our understanding of the existing ones. I contribute to theoretical aspects (such as convergence analysis of simulation algorithms and mathematical analysis of the structure of random number generators) and practical ones (e.g., empirical experimentation, software implementation, and adaptation to specific real-life applications). My main focus in on general tools that have a wide range of applications, such as random number and random variate generators, quasi-Monte Carlo methods, variance-reduction methods, rare-event simulation techniques, and stochastic optimization methods. I also work on selected applications, e.g., in finance, reliability, and management of service systems. ******The main directions of my research, currently and over the next five years, are: (1) study and improve the methods for generating (pseudo)random numbers for simulation on various types of platforms, in particular for massively-parallel computers, and methods to test such generators; (2) develop and study randomized quasi-Monte Carlo (RQMC) methods, which replace the independent vectors of random numbers used in Monte Carlo (MC) simulations by points that cover the space more uniformly than random points, to improve accuracy, and provide effective practical tools that implement these methods; (3) design and study efficient rare-event simulation methods, for settings in which certain events that occur very rarely have a large impact on the performance measure of interest, and study applications of these; (4) develop simulation-based optimization methods for decision making in complex stochastic systems; (5) develop effective methods to build stochastic models of complex service systems that involve humans, based on large amounts of data, to support decision making (e.g., emergency services, call centers, healthcare systems, finance, network economics for the Internet, reliability problems, etc.).**
我的研究项目涉及基本工具(数学,统计和计算)的开发和研究,用于建模,模拟和优化涉及不确定性的系统。近年来,对改进的仿真工具的需求大幅增加。随机(蒙特卡罗)模拟在科学,工程,管理和其他几个领域中大量使用。仿真通常是处理复杂系统的真实模型的唯一实用工具,这些复杂系统通常是动态的,随机的和非线性的。例如,随机模拟和优化一直是机器学习最近取得惊人进展的关键因素。****** 我在这方面的目标是为蒙特卡洛工具集贡献新的想法和方法,并提高我们对现有方法的理解。我有助于理论方面(如仿真算法的收敛性分析和随机数生成器结构的数学分析)和实际方面(例如,经验性实验、软件实现和对具体现实应用的适应)。我主要关注具有广泛应用的通用工具,如随机数和随机变量生成器,准蒙特卡罗方法,方差缩减方法,稀有事件模拟技术和随机优化方法。我还从事选定应用程序的工作,例如,在金融、可靠性和服务系统管理方面。** 我目前和今后五年的主要研究方向是:(1)研究和改进在各种平台上,特别是在并行计算机上产生(伪)随机数的方法,以及测试这种产生器的方法;(2)发展和研究随机拟蒙特卡罗(RQMC)方法,其用比随机点更均匀地覆盖空间的点来代替在蒙特卡罗(MC)模拟中使用的随机数的独立向量,以提高精度,(3)设计和研究有效的稀有事件模拟方法,用于某些事件很少发生时对性能指标有很大影响的环境,并研究这些方法的应用;(4)开发基于模拟的复杂随机系统决策优化方法;(5)开发有效的方法来建立涉及人类的复杂服务系统的随机模型,基于大量数据,以支持决策(例如,紧急服务、呼叫中心、医疗保健系统、金融、互联网的网络经济、可靠性问题等)。**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LEcuyer, Pierre其他文献
LEcuyer, Pierre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LEcuyer, Pierre', 18)}}的其他基金
Fundamental tools for stochastic simulation
随机模拟的基本工具
- 批准号:
RGPIN-2018-05795 - 财政年份:2022
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Fundamental tools for stochastic simulation
随机模拟的基本工具
- 批准号:
RGPIN-2018-05795 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Fundamental tools for stochastic simulation
随机模拟的基本工具
- 批准号:
RGPIN-2018-05795 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Fundamental tools for stochastic simulation
随机模拟的基本工具
- 批准号:
RGPIN-2018-05795 - 财政年份:2019
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Modeling and Simulation of Stochastic Systems
随机系统的建模与仿真
- 批准号:
110050-2013 - 财政年份:2017
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Simulation and Optimization
随机模拟和优化
- 批准号:
1000221484-2010 - 财政年份:2017
- 资助金额:
$ 4.66万 - 项目类别:
Canada Research Chairs
Stochastic Simulation and Optimization
随机模拟和优化
- 批准号:
1000221484-2010 - 财政年份:2016
- 资助金额:
$ 4.66万 - 项目类别:
Canada Research Chairs
Modeling and Simulation of Stochastic Systems
随机系统的建模与仿真
- 批准号:
110050-2013 - 财政年份:2015
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Simulation and Optimization
随机模拟和优化
- 批准号:
1221484-2010 - 财政年份:2015
- 资助金额:
$ 4.66万 - 项目类别:
Canada Research Chairs
Random number generation facilities for OpenCL
OpenCL 的随机数生成工具
- 批准号:
469722-2014 - 财政年份:2014
- 资助金额:
$ 4.66万 - 项目类别:
Engage Plus Grants Program
相似海外基金
Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
- 批准号:
10736507 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别:
Neural and behavioral mechanisms of song learning in zebra finches
斑胸草雀鸣叫学习的神经和行为机制
- 批准号:
10678601 - 财政年份:2023
- 资助金额:
$ 4.66万 - 项目类别:
Tools for the investigation of stochastic multiphysics models
用于研究随机多物理场模型的工具
- 批准号:
RGPIN-2020-04654 - 财政年份:2022
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
A latent variable model for quantifying social behavior in rodents
用于量化啮齿类动物社会行为的潜变量模型
- 批准号:
10535865 - 财政年份:2022
- 资助金额:
$ 4.66万 - 项目类别:
Fundamental tools for stochastic simulation
随机模拟的基本工具
- 批准号:
RGPIN-2018-05795 - 财政年份:2022
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Exploiting convergent evolution to design biomarker extraction tools for the prediction of therapeutic response in cancer
利用趋同进化设计生物标志物提取工具来预测癌症治疗反应
- 批准号:
10320353 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Tools for the investigation of stochastic multiphysics models
用于研究随机多物理场模型的工具
- 批准号:
RGPIN-2020-04654 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Fundamental tools for stochastic simulation
随机模拟的基本工具
- 批准号:
RGPIN-2018-05795 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Exploiting convergent evolution to design biomarker extraction tools for the prediction of therapeutic response in cancer
利用趋同进化设计生物标志物提取工具来预测癌症治疗反应
- 批准号:
10543422 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Fundamental tools for stochastic simulation
随机模拟的基本工具
- 批准号:
RGPIN-2018-05795 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




