Towards Predicting Socio-economic Systems by Mining Social Media Data
通过挖掘社交媒体数据来预测社会经济系统
基本信息
- 批准号:RGPIN-2014-06591
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Social media data is defined as any data generated either in a social context or during a social interaction. Large amount of data is generated everyday by social media users. For example, one billion tweets are twitted every three days. This data is a valuable source to understand social trends, sentiments, opinions, and intentions. The objective in the proposed research is to study how to build models for mining social media data to understand major social trends and patterns and design effective tools to predict complex socio-economic systems. Similar to other data mining problems, many tasks can be implemented under social data mining umbrella including classification, clustering, recommendation, and prediction. Specific examples include classifying social media collaborators and users based on their sentiments toward a product, topic, or content, social role prediction in social networks, extracting transaction network from social network, classifying the type of relationship in social networks (for example personal vs. professional), social link prediction and recommendation, trend prediction for news topics, predicting next trending topic in a community, and predicting stock market performance based on collective mood and sentiment sampled from social media. **Mining social media data has own challenges. Social data is very noisy. It means, in social media data, the signal to noise ratio is very low. A well-known example is Twitter which is dominated by celebrities. Also the majority of tweets are about daily, redundant, and non-important activity of the users. Social data is usually temporal and also known as what we call it big data. Other challenges are privacy issues and credibility of social media. In this research, some of these issues will be addressed. Mining social media data comprises three main components: data collection and pre-processing, analytics, and presentation. In data collection, social data is collected using APIs provided by social sites. Some pre-processing tasks are also applied such as text processing (as long as we are dealing with content), noise removal, and anonymization to protect user privacy. Analytics component includes a wide range of machine learning and data mining tasks such as classification, clustering, recommendation, and prediction. One well-known example is to predict future social links (who will become connected to whom in future) given current social network topology. It addresses the well-known problem of link prediction. The third component presents the analytics result using visualization techniques. In this research, the main focus is to develop methods for the analytics component mainly for socio-economic problems such as predicting stock market performance, social-political crisis, and public health risks. For the two other components, we will employ available tools. **Mining social media data has a wide range of applications from marketing to social and health sciences to politics. Let's asymptotically assume Twitter as a very large social sensor. Although it is very noisy, by appropriate noise filtering, we are able to understand very important social trends such as customer intentions, political opinions, and patterns of social miss-conduct. Other potential applications of the proposed research include: deception detection, user profiling for personalization, stock market trend prediction, sentiment analysis, person to person recommendation, community detection, and influence and reputation analysis, social role prediction (who is doing what), social link classification, detecting network abuse, and spam-user detection.
社交媒体数据被定义为在社交环境中或在社交交互期间生成的任何数据。社交媒体用户每天都会产生大量的数据。例如,每三天就有10亿条推文。这些数据是了解社会趋势,情绪,意见和意图的宝贵来源。该研究的目的是研究如何建立挖掘社交媒体数据的模型,以了解主要的社会趋势和模式,并设计有效的工具来预测复杂的社会经济系统。与其他数据挖掘问题类似,许多任务可以在社会数据挖掘框架下实现,包括分类,聚类,推荐和预测。具体示例包括基于社交媒体合作者和用户对产品、主题或内容的情感、社交网络中的社交角色预测、从社交网络中提取交易网络、对社交网络中的关系类型进行分类(例如个人对专业)、社交链接预测和推荐、新闻话题的趋势预测、预测社区中的下一个趋势话题,以及基于从社交媒体中采样的集体情绪和情绪来预测股市表现。** 挖掘社交媒体数据有自己的挑战。社交数据非常嘈杂。这意味着,在社交媒体数据中,信噪比非常低。一个著名的例子是由名人主导的Twitter。此外,大多数推文都是关于用户的日常,冗余和不重要的活动。社交数据通常是暂时的,也被称为大数据。其他挑战是隐私问题和社交媒体的可信度。在本研究中,其中一些问题将得到解决。挖掘社交媒体数据包括三个主要部分:数据收集和预处理,分析和呈现。在数据收集中,社交数据是使用社交网站提供的API收集的。还应用了一些预处理任务,如文本处理(只要我们处理的是内容)、噪声消除和匿名化,以保护用户隐私。分析组件包括广泛的机器学习和数据挖掘任务,如分类,聚类,推荐和预测。一个众所周知的例子是预测未来的社会联系(谁将成为连接到谁在未来)给定当前的社会网络拓扑结构。它解决了众所周知的链接预测问题。第三个组件使用可视化技术呈现分析结果。在这项研究中,主要重点是开发分析组件的方法,主要用于预测股票市场表现,社会政治危机和公共卫生风险等社会经济问题。对于其他两个组件,我们将使用可用的工具。** 挖掘社交媒体数据具有广泛的应用,从营销到社会和健康科学再到政治。让我们渐进地假设Twitter是一个非常大的社会传感器。虽然它非常嘈杂,但通过适当的噪音过滤,我们能够了解非常重要的社会趋势,如客户意图,政治观点和社会不当行为的模式。其他潜在的应用所提出的研究包括:欺骗检测,个性化用户分析,股市趋势预测,情感分析,个人对个人的推荐,社区检测,影响力和声誉分析,社会角色预测(谁在做什么),社会链接分类,检测网络滥用,和垃圾邮件用户检测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Makrehchi, Masoud其他文献
Improving clustering performance using independent component analysis and unsupervised feature learning
- DOI:
10.1186/s13673-018-0148-3 - 发表时间:
2018-08-23 - 期刊:
- 影响因子:6.6
- 作者:
Gultepe, Eren;Makrehchi, Masoud - 通讯作者:
Makrehchi, Masoud
Content Tree Word Embedding for document representation
- DOI:
10.1016/j.eswa.2017.08.021 - 发表时间:
2017-12-30 - 期刊:
- 影响因子:8.5
- 作者:
Kamkarhaghighi, Mehran;Makrehchi, Masoud - 通讯作者:
Makrehchi, Masoud
Makrehchi, Masoud的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Makrehchi, Masoud', 18)}}的其他基金
Algorithms and applications of Link Mining: Making Sense of Network Data
链接挖掘的算法和应用:理解网络数据
- 批准号:
RGPIN-2021-03380 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and applications of Link Mining: Making Sense of Network Data
链接挖掘的算法和应用:理解网络数据
- 批准号:
RGPIN-2021-03380 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Towards Predicting Socio-economic Systems by Mining Social Media Data
通过挖掘社交媒体数据来预测社会经济系统
- 批准号:
RGPIN-2014-06591 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Identifying General Product and Brand Names in Online Forums
识别在线论坛中的通用产品和品牌名称
- 批准号:
521298-2017 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Engage Grants Program
Towards Predicting Socio-economic Systems by Mining Social Media Data
通过挖掘社交媒体数据来预测社会经济系统
- 批准号:
RGPIN-2014-06591 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Detecting relevant segment of text in legal domain
检测法律领域中的相关文本片段
- 批准号:
499514-2016 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Engage Grants Program
Towards Predicting Socio-economic Systems by Mining Social Media Data
通过挖掘社交媒体数据来预测社会经济系统
- 批准号:
RGPIN-2014-06591 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Towards Predicting Socio-economic Systems by Mining Social Media Data
通过挖掘社交媒体数据来预测社会经济系统
- 批准号:
RGPIN-2014-06591 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Computer assisted generation and transformation of web content
计算机辅助网页内容的生成和转换
- 批准号:
477757-2015 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Engage Grants Program
Towards Predicting Socio-economic Systems by Mining Social Media Data
通过挖掘社交媒体数据来预测社会经济系统
- 批准号:
RGPIN-2014-06591 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
NSF PRFB FY 2023: Considering evolutionary responses to temperature variability when predicting risk to climate change and disease in amphibians
NSF PRFB 2023 财年:在预测气候变化和两栖动物疾病风险时考虑对温度变化的进化反应
- 批准号:
2305659 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Fellowship Award
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
- 批准号:
EP/Y03614X/1 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Research Grant
Predicting effects of interannual variability in climate and drought on plant community outcomes, resilience, and soil carbon using temporally replicated grassland reconstructions
使用临时复制的草地重建来预测气候和干旱的年际变化对植物群落结果、恢复力和土壤碳的影响
- 批准号:
2343738 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Continuing Grant
Predicting abnormalities in abdominal organs through prognostic factors extracted from image data
通过从图像数据中提取的预后因素来预测腹部器官的异常
- 批准号:
24K21121 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
R-Map - Mapping, understanding, assessing and predicting the effects of remote working arrangements in urban and rural areas
R-Map - 绘制、理解、评估和预测城乡地区远程工作安排的影响
- 批准号:
10106145 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
EU-Funded
Predicting future biodiversity of ecosystem service providers in Japan using new approaches to quantify and reduce uncertainty
使用量化和减少不确定性的新方法来预测日本生态系统服务提供者的未来生物多样性
- 批准号:
24K09176 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Federated Learning for Predicting Electricity Consumption with Mixed Global/Local Models
CPS:中:使用混合全局/本地模型预测电力消耗的联合学习
- 批准号:
2317079 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Predicting emergence risk of future zoonotic viruses through computational learning
通过计算学习预测未来人畜共患病毒的出现风险
- 批准号:
MR/X019616/1 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Fellowship
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
CAREER: Marine Debris at Coastlines: predicting sources from drift, dispersion, and beaching via experiments and multiscale stochastic models
职业:海岸线的海洋碎片:通过实验和多尺度随机模型预测漂移、分散和搁浅的来源
- 批准号:
2338221 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Continuing Grant