Computer assisted generation and transformation of web content
计算机辅助网页内容的生成和转换
基本信息
- 批准号:477757-2015
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Web has become the underlying fabric for information dissemination in the modern society. Over the years, we observe two emerging trends: First is that the Web is still mainly for human audience. Much of development of the Web technology focuses on the improvement of content consumption by human readers. In the second trend we witness that there is an increasing amount of content on the Web which are machine generated. To improve the ease of consumption of the machine generated data, the final Web content takes on the form of text based articles, graphical visualization and charts, and tabulation of aggregates.
This proposal focuses on algorithms and methods that can assist with the generation of Web content for the audience from structured data sets. In particular, we are interested at content transformation techniques such that the end content is tailored some specific audience.
Currently, the standard publishing method requires an analyst to summarize the data set, and manually publish the analysis result in a mixture of text, graphs and tables. Due to the manual intensive involvement of the author, in most cases, only one version of the final publication is generated. This limits the readability and accessibility of the underlying information in several ways.
The industry partner (Search Engine People) can benefit from the proposed research by the following improvement in their services: (i) their site content will be targeted to individual users. This leads to higher conversion rate and retention of web traffic; (ii) the visibility of the web content will be improved with more referencing from external sites lead to higher traffic and better Google PageRank; and (iii) better selling point to the company's core business and services.
在现代社会,网络已经成为信息传播的基础结构。多年来,我们观察到了两个新的趋势:第一,网络仍然主要面向人类受众。Web技术的发展很大程度上着眼于改善人类读者对内容的消费。在第二个趋势中,我们看到Web上越来越多的内容是由机器生成的。为了提高机器生成的数据的易用性,最终的Web内容采用基于文本的文章、图形可视化和图表以及聚合的表格的形式。
该提案侧重于可以帮助从结构化数据集生成面向受众的Web内容的算法和方法。特别是,我们对内容转换技术感兴趣,以便最终内容针对特定的受众量身定做。
目前,标准的发布方法需要分析师汇总数据集,并以文本、图表和表格的混合形式手动发布分析结果。由于作者的大量手工参与,在大多数情况下,只生成最终出版物的一个版本。这从几个方面限制了底层信息的可读性和可访问性。
行业合作伙伴(搜索引擎人员)可以从拟议的研究中受益,因为他们的服务有以下改进:(I)他们的网站内容将针对个人用户。这将导致更高的转化率和网络流量的保持;(Ii)网络内容的可见性将得到改善,因为更多来自外部网站的引用会带来更高的流量和更好的Google PageRank;以及(Iii)更好地针对公司的核心业务和服务进行销售。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Makrehchi, Masoud其他文献
Improving clustering performance using independent component analysis and unsupervised feature learning
- DOI:
10.1186/s13673-018-0148-3 - 发表时间:
2018-08-23 - 期刊:
- 影响因子:6.6
- 作者:
Gultepe, Eren;Makrehchi, Masoud - 通讯作者:
Makrehchi, Masoud
Content Tree Word Embedding for document representation
- DOI:
10.1016/j.eswa.2017.08.021 - 发表时间:
2017-12-30 - 期刊:
- 影响因子:8.5
- 作者:
Kamkarhaghighi, Mehran;Makrehchi, Masoud - 通讯作者:
Makrehchi, Masoud
Makrehchi, Masoud的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Makrehchi, Masoud', 18)}}的其他基金
Algorithms and applications of Link Mining: Making Sense of Network Data
链接挖掘的算法和应用:理解网络数据
- 批准号:
RGPIN-2021-03380 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and applications of Link Mining: Making Sense of Network Data
链接挖掘的算法和应用:理解网络数据
- 批准号:
RGPIN-2021-03380 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Towards Predicting Socio-economic Systems by Mining Social Media Data
通过挖掘社交媒体数据来预测社会经济系统
- 批准号:
RGPIN-2014-06591 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Towards Predicting Socio-economic Systems by Mining Social Media Data
通过挖掘社交媒体数据来预测社会经济系统
- 批准号:
RGPIN-2014-06591 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Identifying General Product and Brand Names in Online Forums
识别在线论坛中的通用产品和品牌名称
- 批准号:
521298-2017 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Engage Grants Program
Towards Predicting Socio-economic Systems by Mining Social Media Data
通过挖掘社交媒体数据来预测社会经济系统
- 批准号:
RGPIN-2014-06591 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Detecting relevant segment of text in legal domain
检测法律领域中的相关文本片段
- 批准号:
499514-2016 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Engage Grants Program
Towards Predicting Socio-economic Systems by Mining Social Media Data
通过挖掘社交媒体数据来预测社会经济系统
- 批准号:
RGPIN-2014-06591 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Towards Predicting Socio-economic Systems by Mining Social Media Data
通过挖掘社交媒体数据来预测社会经济系统
- 批准号:
RGPIN-2014-06591 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Towards Predicting Socio-economic Systems by Mining Social Media Data
通过挖掘社交媒体数据来预测社会经济系统
- 批准号:
RGPIN-2014-06591 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
光辅助MOCVD法制备多层结构提高厚YBCO 外延膜电流承载能力的研究
- 批准号:51002063
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
控制厚皮甜瓜花性型基因“A“的精细构图及标记辅助育种
- 批准号:30471113
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Towards New Frontiers in Computer Assisted Image Guidance with Next Generation Point of Care Ultrasound
利用下一代护理点超声迈向计算机辅助图像引导的新领域
- 批准号:
RGPIN-2018-03844 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Towards New Frontiers in Computer Assisted Image Guidance with Next Generation Point of Care Ultrasound
利用下一代护理点超声迈向计算机辅助图像引导的新领域
- 批准号:
RGPIN-2018-03844 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Next-Generation Cutting Planes: Compression, Automation, Diversity, and Computer-Assisted Mathematics
合作研究:下一代切割面:压缩、自动化、多样性和计算机辅助数学
- 批准号:
2012764 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Collaborative Research: Next-Generation Cutting Planes: Compression, Automation, Diversity, and Computer-Assisted Mathematics
合作研究:下一代切割面:压缩、自动化、多样性和计算机辅助数学
- 批准号:
2012429 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Towards New Frontiers in Computer Assisted Image Guidance with Next Generation Point of Care Ultrasound
利用下一代护理点超声迈向计算机辅助图像引导的新领域
- 批准号:
RGPIN-2018-03844 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Towards New Frontiers in Computer Assisted Image Guidance with Next Generation Point of Care Ultrasound
利用下一代护理点超声迈向计算机辅助图像引导的新领域
- 批准号:
RGPIN-2018-03844 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Developing a Computer-Assisted Coding Program to Facilitate Hospital Discharge Abstract Administrative Data Generation.
开发计算机辅助编码程序以促进医院出院摘要管理数据生成。
- 批准号:
391028 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Operating Grants
Towards New Frontiers in Computer Assisted Image Guidance with Next Generation Point of Care Ultrasound
利用下一代护理点超声迈向计算机辅助图像引导的新领域
- 批准号:
RGPIN-2018-03844 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Brain-Computer Interface (BCI) Enabled Memory Training for Schizophrenia
脑机接口 (BCI) 支持精神分裂症记忆训练
- 批准号:
9114892 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别: