Spacetime Curvature and Quantum Information
时空曲率和量子信息
基本信息
- 批准号:RGPIN-2015-04201
- 负责人:
- 金额:$ 4.59万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
What is the relationship between space, time, and quantum information? This proposal is designed to answer this question, bringing together phenomena as varied and exotic as black holes, reference frames, thermodynamics, dark matter, polymers, holography, quantum information, cavity/circuit experiments in Quantum Electrodynamics, and quantum foundations. ***One side of the question concerns Black Holes, whose existence is all but guaranteed based on evidence from astronomy. Black holes appear to be the ultimate repositories of information, fully absorbing it but radiating thermally in a manner that "erases" the information, violating basic principles of quantum physics. To resolve this contradiction and understand how quantum effects influence spacetime, we must understand how black holes behave thermodynamically. I will pioneer a new approach to this problem I call "Black Hole Chemistry", based on my recent work showing that vacuum energy can cause black holes to behave like chemical systems, with liquid/gas-type phase transitions, triple points, and more. "Black hole chemistry" will likely overturn our standard notions of gravitational thermodynamics, particularly with regards to the ideas about holography that emerge from string theory. I will forge ahead to examine the implications of black hole chemistry for early-universe cosmology, the proposed dual relationship between gravity and condensed-matter systems, and the appearance of possible new phenomena such as transitions into a new glass phase and the merging of 4 distinct black hole phases into a "quadruple critical point".***The other side of the question is how relativistic effects influence quantum information tasks. Known as Relativistic Quantum Information (RQI) this new field has in the past 10 years developed from a study of foundational questions to a point where actual experiments can be contemplated. I propose to advance RQI to the next level of genuine confrontation with experiment, using methods my group has developed in the past 5 years. Various classes of experiments will be proposed, constructed, and refined. One class will probe how accelerating detectors actually get hot (a long-standing prediction called the Unruh effect), using cavities and circuits as simulation tools. Another class will exploit the new technique of Quantum Control to study a quantum version of the gravitational slowdown of light, the first confrontation of RQI with experiment in a gravitational setting. A third class of experiments will consider applications of RQI, such as non-demolition photon measurements, a quantum seismograph, harvesting entanglement using cavities, and various aspects of metrology.****The scope of this research ranges from the largest physical scales to the smallest, and from abstract mathematical questions to applied research in the lab. Its results will provide us with a new understanding of gravity and the quantum.********
空间、时间和量子信息之间的关系是什么?该提案旨在回答这个问题,汇集了黑洞、参考系、热力学、暗物质、聚合物、全息术、量子信息、量子电动力学中的腔/电路实验和量子基础等各种奇异现象。* 问题的一方面涉及黑洞,根据天文学的证据,黑洞的存在几乎是可以保证的。 黑洞似乎是信息的最终储存库,完全吸收信息,但以一种“擦除”信息的方式进行热辐射,违反了量子物理学的基本原理。为了解决这个矛盾并理解量子效应如何影响时空,我们必须理解黑洞的行为。 我将开创一种新的方法来解决这个问题,我称之为“黑洞化学”,基于我最近的工作,表明真空能量可以导致黑洞表现得像化学系统一样,具有液体/气体类型的相变,三相点等等。 “黑洞化学”很可能会颠覆我们对引力热力学的标准概念,特别是关于从弦论中产生的全息的概念。 我将继续研究黑洞化学对早期宇宙学的影响,引力和凝聚态系统之间的双重关系,以及可能出现的新现象,如转变成新的玻璃相和4个不同的黑洞相合并成一个“四重临界点”。问题的另一面是相对论效应如何影响量子信息任务。被称为相对论量子信息(RQI)的这个新领域在过去的10年里已经从基础问题的研究发展到可以考虑实际实验的地步。我建议将RQI提升到真正对抗实验的新水平,使用我的团队在过去5年中开发的方法。 将提出、构建和改进各种类型的实验。其中一门课将探索加速探测器如何实际变热(一个长期存在的预测称为Unruh效应),使用空腔和电路作为模拟工具。另一类将利用量子控制的新技术来研究光的引力减速的量子版本,这是RQI在引力环境中与实验的第一次对抗。第三类实验将考虑RQI的应用,例如非破坏光子测量,量子地震仪,使用腔体收集纠缠以及计量学的各个方面。这项研究的范围从最大的物理尺度到最小的,从抽象的数学问题到实验室的应用研究。 它的结果将为我们提供对引力和量子的新理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mann, Robert其他文献
Risk Perception of Traffic Accidents Due to Alcohol and Marijuana Use in Mexican College Students.
- DOI:
10.3390/healthcare11071009 - 发表时间:
2023-04-01 - 期刊:
- 影响因子:2.8
- 作者:
Jimenez, Alberto;Brands, Bruna;Mann, Robert;Saldivar, Gabriela;Juarez-Loya, Angelica;Garbus, Pamela;Gonzalez-Forteza, Catalina - 通讯作者:
Gonzalez-Forteza, Catalina
Cycling-related crash risk and the role of cannabis and alcohol: a case-crossover study
- DOI:
10.1016/j.ypmed.2014.06.006 - 发表时间:
2014-09-01 - 期刊:
- 影响因子:5.1
- 作者:
Asbridge, Mark;Mann, Robert;Rehm, Juergen - 通讯作者:
Rehm, Juergen
Comorbidity prevalence study between psychological distress and drug abuse in Portal Amarillo users, Montevideo - Uruguay
- DOI:
10.1590/s0104-07072012000500022 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:0
- 作者:
Domenech, Diana;Mann, Robert;Khenti, Akwatu - 通讯作者:
Khenti, Akwatu
Reliability and validity of pressure and temporal parameters recorded using a pressure-sensitive insole during running
- DOI:
10.1016/j.gaitpost.2013.08.026 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:2.4
- 作者:
Mann, Robert;Malisoux, Laurent;Theisen, Daniel - 通讯作者:
Theisen, Daniel
Children and youth with ′unspecified injury to the head′: implications for traumatic brain injury research and surveillance
- DOI:
10.1186/s12982-015-0031-x - 发表时间:
2015-06-25 - 期刊:
- 影响因子:2.3
- 作者:
Chan, Vincy;Mann, Robert;Colantonio, Angela - 通讯作者:
Colantonio, Angela
Mann, Robert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mann, Robert', 18)}}的其他基金
The Entangling Power of Spacetime
时空的纠缠力量
- 批准号:
RGPIN-2020-05205 - 财政年份:2022
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
The Entangling Power of Spacetime
时空的纠缠力量
- 批准号:
RGPIN-2020-05205 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
The Entangling Power of Spacetime
时空的纠缠力量
- 批准号:
RGPIN-2020-05205 - 财政年份:2020
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
Spacetime Curvature and Quantum Information
时空曲率和量子信息
- 批准号:
RGPIN-2015-04201 - 财政年份:2019
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
Spacetime Curvature and Quantum Information
时空曲率和量子信息
- 批准号:
RGPIN-2015-04201 - 财政年份:2017
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
Spacetime Curvature and Quantum Information
时空曲率和量子信息
- 批准号:
RGPIN-2015-04201 - 财政年份:2016
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
Spacetime Curvature and Quantum Information
时空曲率和量子信息
- 批准号:
RGPIN-2015-04201 - 财政年份:2015
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
Spacetime information
时空信息
- 批准号:
44272-2010 - 财政年份:2014
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
Spacetime information
时空信息
- 批准号:
44272-2010 - 财政年份:2013
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
Spacetime information
时空信息
- 批准号:
44272-2010 - 财政年份:2012
- 资助金额:
$ 4.59万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 4.59万 - 项目类别:
Continuing Grant
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
- 批准号:
24K16928 - 财政年份:2024
- 资助金额:
$ 4.59万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigating the mechanosensitive interplays between genetic control and self-organisation during the emergence of cardiac tissue curvature
研究心脏组织曲率出现过程中遗传控制和自组织之间的机械敏感性相互作用
- 批准号:
BB/Y00566X/1 - 财政年份:2024
- 资助金额:
$ 4.59万 - 项目类别:
Research Grant
Canonical mean curvature flow and its application to evolution problems
正则平均曲率流及其在演化问题中的应用
- 批准号:
23H00085 - 财政年份:2023
- 资助金额:
$ 4.59万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Toward applications of the crystalline mean curvature flow
晶体平均曲率流的应用
- 批准号:
23K03212 - 财政年份:2023
- 资助金额:
$ 4.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability for nonlocal curvature functionals
非局部曲率泛函的稳定性
- 批准号:
EP/W014807/2 - 财政年份:2023
- 资助金额:
$ 4.59万 - 项目类别:
Research Grant
Nonlocal Magneto-Curvature Instabilities and their Associated Nonlinear Transport in Astrophysical Disks
天体物理盘中的非局域磁曲率不稳定性及其相关的非线性输运
- 批准号:
2308839 - 财政年份:2023
- 资助金额:
$ 4.59万 - 项目类别:
Standard Grant
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
- 批准号:
2303624 - 财政年份:2023
- 资助金额:
$ 4.59万 - 项目类别:
Standard Grant
Spaces with Ricci curvature bounded below
具有下界的里奇曲率空间
- 批准号:
2304698 - 财政年份:2023
- 资助金额:
$ 4.59万 - 项目类别:
Standard Grant
The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
- 批准号:
2305411 - 财政年份:2023
- 资助金额:
$ 4.59万 - 项目类别:
Standard Grant