Design of Advanced Linear Circuits and Systems

先进线性电路和系统的设计

基本信息

  • 批准号:
    RGPIN-2014-05653
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

My research is aimed at designing and developing new circuits capable of performing some of the simplest mathematical functions using analog circuits. Several of these functions include amplification, filtering, multiplication, division, sensing, and the general processing of signals. There is a need to constantly reexamine such functions because technology is rapidly changing and what may work well in one integrated circuit technology may have to be revised in another.**One example of such a function is a logarithmic or exponential digital to analog converter (DAC) function that I am seeking new ways to implement in new integrated circuit technologies. This is to meet the challenges associated with shrinking power supplies and transistor sizes. My research into new logarithmic and exponential multiplying D/A amplifiers is focused on using first and possibly second order approximations to logarithmic and exponential functions, and expanding the dynamic range of those functions to meet realistic requirements. The expectation is that hardware savings may be gained without excessive losses through the use of these approximation functions. Logarithmic DACs find application in automatic gain control circuits and gain or volume controls. **Another example of general processing of signals is in filter design. All electronic circuits use filters that pass low or high frequencies, a band of frequencies, or eliminate a particular band of frequencies. Much of my proposed and yet untapped research is aimed at allowing more choice of several recently newly introduced parameters associated with the frequency response of these new filters, hence allowing more precise filter design, than conventional methods. **To accomplish much of this, research into new filter circuit design is focused on an emerging and exciting use of fractional capacitors in filter structures. This unique and relatively unexplored element has the property that its impedance is no longer pure imaginary, but it has a real component to its impedance. This element whose properties are not found naturally in most materials has been used by our group to date to produce unusual characteristics in filters such as asymmetry and sharp filter responses that are not available through commercial capacitors or conventional means.**As part of our ongoing research I have also discovered they can be used in modeling the electrical behavior of human tissue, agriculture and looking for cancers. While fractional capacitors are presently not available commercially, this entire research has the potential to revolutionize many other disciplines of electrical engineering, all the while being cross discipline. Why, because fractional calculus long time use in controls and system identification has not been really applied to addressing electrical engineering problems and seeking new ways of doing things. My research work therefore seeks to add to the general body of knowledge both in the area of analog fractional filtering and modeling element properties. The latter application, to possibly aid in bioimpedance measurements in general, or characterizing tissue or monitoring for physiological changes. Any discoveries made here can be further used as a potential diagnostic tool for cancer detection and monitoring physiological changes due to other health conditions. With this application, the need for low-cost, wearable/implantable monitoring devices using indirect measurement techniques becomes extremely useful in both monitoring and possibly keeping health costs down.
我的研究旨在设计和开发能够使用模拟电路执行一些最简单的数学功能的新电路。其中一些功能包括放大,过滤,乘法,除法,传感和信号的一般处理。由于技术正在迅速发生变化,并且在一个集成的电路技术中可能必须在另一个集成电路技术中进行修订,因此需要不断重新检查此类功能。这是为了应对与缩小的电源和晶体管大小相关的挑战。我对新的对数和指数乘以D/A放大器的研究集中在使用对数和指数函数的第一阶和二阶近似值,并扩大这些功能的动态范围以满足现实要求。期望可以通过使用这些近似功能获得硬件节省而不会过多损失。对数DAC在自动增益控制电路和增益或体积控制中找到应用。 **信号一般处理的另一个示例是在滤波器设计中。所有电子电路都使用低频或高频,频率频段或消除特定频率的过滤器。我提出的大部分尚未开发的研究旨在允许与这些新过滤器的频率响应相关的几个最近引入的参数进行更多选择,因此允许与常规方法相比,允许更精确的滤波器设计。 **为了实现这一点,对新滤清器电路设计的研究集中在滤波器结构中的新兴和令人兴奋的用途。这个独特且相对未开发的元素具有其阻抗不再是纯虚构的属性,但它具有真正的阻抗。迄今为止,该元素在大多数材料中都没有自然发现,迄今为止,该元素已被使用,以在不对称和尖锐的过滤器响应等过滤器中产生异常的特征,这些特征是通过商业电容器或常规手段无法获得的。尽管目前在商业上尚不在商业上使用分数电容器,但整个研究都有可能彻底改变电气工程的许多其他学科,同时又是跨学科。为什么,因为在控件和系统识别中长时间使用分数,并未真正应用于解决电气工程问题并寻求新的做事方式。因此,我的研究工作旨在增加模拟分数过滤和建模元素属性领域的一般知识体系。后一种应用,可能有助于一般的生物阻抗测量,或表征组织或监测生理变化。此处提出的任何发现都可以作为癌症检测和监测其他健康状况的生理变化的潜在诊断工具。 通过此应用,使用间接测量技术对低成本,可穿戴/可植入的监视设备的需求在监测和可能降低健康成本方面非常有用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maundy, Brent其他文献

Numerical extraction of Cole-Cole impedance parameters from step response
Fractional Resonance-Based RLβCα Filters
  • DOI:
    10.1155/2013/726721
  • 发表时间:
    2013-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Freeborn, Todd J.;Maundy, Brent;Elwakil, Ahmed
  • 通讯作者:
    Elwakil, Ahmed
Fractional-order models of supercapacitors, batteries and fuel cells: a survey
Design of a Portable Low-Cost Impedance Analyzer
A novel circuit element and its application in signal amplification

Maundy, Brent的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maundy, Brent', 18)}}的其他基金

Design of Analog Linear Circuits, Fractional Order Systems and Bioimpedance Measurements Techniques
模拟线性电路、分数阶系统和生物阻抗测量技术的设计
  • 批准号:
    RGPIN-2019-03911
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Design of Analog Linear Circuits, Fractional Order Systems and Bioimpedance Measurements Techniques
模拟线性电路、分数阶系统和生物阻抗测量技术的设计
  • 批准号:
    RGPIN-2019-03911
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Design of Analog Linear Circuits, Fractional Order Systems and Bioimpedance Measurements Techniques
模拟线性电路、分数阶系统和生物阻抗测量技术的设计
  • 批准号:
    RGPIN-2019-03911
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Design of Analog Linear Circuits, Fractional Order Systems and Bioimpedance Measurements Techniques
模拟线性电路、分数阶系统和生物阻抗测量技术的设计
  • 批准号:
    RGPIN-2019-03911
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Design of Advanced Linear Circuits and Systems
先进线性电路和系统的设计
  • 批准号:
    RGPIN-2014-05653
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Design of Advanced Linear Circuits and Systems
先进线性电路和系统的设计
  • 批准号:
    RGPIN-2014-05653
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Design of Advanced Linear Circuits and Systems
先进线性电路和系统的设计
  • 批准号:
    RGPIN-2014-05653
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Design of Advanced Linear Circuits and Systems
先进线性电路和系统的设计
  • 批准号:
    RGPIN-2014-05653
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Linear circuit element design
线性电路元件设计
  • 批准号:
    203609-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Linear circuit element design
线性电路元件设计
  • 批准号:
    203609-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

先进制程技术下可布线性驱动的VLSI混合高度单元布局研究
  • 批准号:
    62104037
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
先进制程技术下可布线性驱动的VLSI混合高度单元布局研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
不同能量重离子引起先进微电子器件单粒子效应的等效机理研究
  • 批准号:
    11675013
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
基于先进分布式非线性算法的含间歇性电源智能电网无功优化研究
  • 批准号:
    51507193
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于BONM建模的分布式能源系统先进鲁棒自适应控制方法研究
  • 批准号:
    51576040
  • 批准年份:
    2015
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Project 5: Targeting Oxidative Phosphorylation in AML
项目 5:针对 AML 中的氧化磷酸化
  • 批准号:
    10931070
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Unraveling the dynamic between alcohol use and consequences in college women: Modern perspectives on the menstrual cycle, advanced statistics, and team science strategies
揭示大学女性饮酒及其后果之间的动态:月经周期的现代观点、先进的统计数据和团队科学策略
  • 批准号:
    10709515
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
Advanced planar image reconstruction for targeted alpha therapy
用于靶向 α 治疗的高级平面图像重建
  • 批准号:
    10453023
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
Unraveling the dynamic between alcohol use and consequences in college women: Modern perspectives on the menstrual cycle, advanced statistics, and team science strategies
揭示大学女性饮酒及其后果之间的动态:月经周期的现代观点、先进的统计数据和团队科学策略
  • 批准号:
    10537284
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
Advanced planar image reconstruction for targeted alpha therapy
用于靶向 α 治疗的高级平面图像重建
  • 批准号:
    10593085
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了