Pseudospectral Methods of Solution of the Fokker-Planck and Schroedinger Equations

求解福克-普朗克方程和薛定谔方程的伪谱方法

基本信息

  • 批准号:
    527568-2018
  • 负责人:
  • 金额:
    $ 0.33万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    University Undergraduate Student Research Awards
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
无摘要- Aucun sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Morrison, Conor其他文献

Morrison, Conor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Morrison, Conor', 18)}}的其他基金

The Mathematics of Stochastic Neuron Models
随机神经元模型的数学
  • 批准号:
    541380-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 0.33万
  • 项目类别:
    University Undergraduate Student Research Awards

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
  • 批准号:
    2338641
  • 财政年份:
    2024
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
Improvement of methods for searching vast solution spaces of tension-compression mixed form-finding problems of shells.
壳拉压混合找形问题大解空间搜索方法的改进。
  • 批准号:
    23K17784
  • 财政年份:
    2023
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of effective and accurate non-conventional solution methods for shape inverse problems: theory and numerics
开发有效且准确的形状反问题非常规求解方法:理论和数值
  • 批准号:
    23K13012
  • 财政年份:
    2023
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Enabling new characterisation methods for dynamic systems through the upgrade of 700 MHz solution NMR spectrometer
通过升级 700 MHz 溶液核磁共振波谱仪,为动态系统提供新的表征方法
  • 批准号:
    BB/W020297/1
  • 财政年份:
    2022
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Research Grant
Multistage Stochastic Integer Programming: Approximate Solution Methods and Applications
多阶段随机整数规划:近似解法及应用
  • 批准号:
    RGPIN-2018-04984
  • 财政年份:
    2022
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Discovery Grants Program - Individual
Scheduling and Resource Allocation for Improving Service and Operations Management: Modelling, Solution Methods and Applications (especially in Healthcare)
用于改进服务和运营管理的调度和资源分配:建模、解决方案方法和应用(特别是在医疗保健领域)
  • 批准号:
    RGPIN-2018-06219
  • 财政年份:
    2022
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Discovery Grants Program - Individual
Business Cycle Accounting with Non-linear Solution Methods
非线性求解方法的经济周期会计
  • 批准号:
    22K01394
  • 财政年份:
    2022
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Efficient Conservative High-Order Solution-Flux Domain Decomposition Methods and Local Refinements for Flows in Porous Media and Electromagnetics
多孔介质和电磁学中流动的高效保守高阶解-通量域分解方法和局部细化
  • 批准号:
    RGPIN-2022-04571
  • 财政年份:
    2022
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Discovery Grants Program - Individual
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
  • 批准号:
    569181-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Convex relaxation of problems in data science and efficient solution methods
数据科学中问题的凸松弛及高效解决方法
  • 批准号:
    RGPIN-2020-04096
  • 财政年份:
    2022
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了