Geochronology of Inner Solar System Materials Down to Atom Scale
内太阳系材料的地质年代学直至原子尺度
基本信息
- 批准号:RGPIN-2014-05823
- 负责人:
- 金额:$ 3.13万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The recovery of time information from natural materials is essential to understanding the history of planets and the exploration of their mineral resources, and microcrystals of minerals such as zircon are an amazing tool for this. They are the ultimate survivor crystals and contain trace amounts of Uranium that can be used to date volcanic, tectonic, ore-forming, and impact events throughout solar system history. During tenure of my current Discovery Grant I have built a nationally unique electron nanobeam laboratory (the "ZAPLab") and established a new approach to geochronology using state-of-the-art electron microscopy. This allows us to find these microcrystals in places they've not previously been recognized, and to measure their growth history as well as signatures of origin and disturbance by events such as large meteorite impacts. My team combines this `structural time' information with the chemical record of time preserved as ratios of radioactive isotopes of Uranium and the stable daughter Lead atoms. My program has so far yielded breakthrough results manifest most recently in our publication in the journal Nature in which we solved a decades-old geochronology puzzle to reveal that the most common Martian meteorites originally formed on the flanks of young Martian supervolcanoes rather than as 4 billion year old crust (Moser et al. 2013a). Many more discoveries are anticipated owing to our discovery in partnership with meteorite archivists and collectors of a large suite of other dating minerals in inner solar system meteorites ranging from the Moon to the Asteroid Belt. The next five years will also see my team establish a new geochronology approach using the Atom Probe, a recently developed instrument for materials science that allows us to image the atoms in crystals in three dimensions. We will improve on our early results that show it is possible to `see' and measure chemical and structural records of time for the first time in natural crystals. My team of HQP will also use new ZAPLab tools to analyse shocked microcrystals in giant impacts in Africa and Canada to establish the variation in behaviour of U-Pb dating minerals during a cratering event so that we can more confidently interpret what we are finding in meteoritic fragments of other bodies in the solar system. With this program my team will tackle fundamental problems such as knowing precisely when water was flowing on ancient Mars. At the same time ZAPLab research will focus on solving economic geology problems such as the age and evolution of ore minerals and ore deposits in Arctic Canada, the Sudbury impact structure and elsewhere where applied scientific training and knowledge transfer is beneficial to industry and to improving ZAPLab research capacity. My expertise in measuring the orientation and chemical microstructure of crystals is also useful in helping others test the strength and corrosion-resistance of manufactured materials, and during the proposed Discovery Grant period I will continue to partner with and train chemists and engineers in a range of projects such as the improvement of metal alloys being considered for ensuring long-term isolation of radioactive waste from the environment. My group has an excellent track record of communicating the results of our research to the public and transferring knowledge to Canadian industry, and all findings from the above research will be communicated at every opportunity as with recent CBC online articles on my Martian research and site visits with Canadian mineral exploration groups. In this way my proposed research program will deliver exciting additional discoveries regarding the age and/or nature of materials to the benefit of Canadian science and industry.
从天然材料中恢复时间信息对于了解行星的历史和勘探其矿物资源至关重要,而锆石等矿物微晶是实现这一目标的神奇工具。它们是最终的幸存者晶体,含有微量的铀,可用于确定整个太阳系历史中火山、构造、成矿和撞击事件的年代。在我目前的发现补助金任职期间,我建立了一个全国独一无二的电子纳米束实验室(“ZAPLab”),并利用最先进的电子显微镜建立了一种新的地质年代学方法。这使我们能够在以前未被识别的地方找到这些微晶体,并测量它们的生长历史以及起源特征和大型陨石撞击等事件的干扰。我的团队将这种“结构时间”信息与以铀和稳定子铅原子的放射性同位素比率保存的时间化学记录结合起来。到目前为止,我的计划已经取得了突破性的成果,最近发表在《自然》杂志上,我们解决了一个长达数十年之久的地质年代学难题,揭示了最常见的火星陨石最初形成于年轻的火星超级火山的侧面,而不是形成于 40 亿年前的地壳(Moser 等人,2013a)。由于我们与陨石档案管理员和收藏家合作,在从月球到小行星带的内太阳系陨石中发现了大量其他测年矿物,因此预计会有更多发现。未来五年,我的团队还将使用原子探针建立一种新的地质年代学方法,这是一种最近开发的材料科学仪器,使我们能够对晶体中的原子进行三维成像。我们将改进我们的早期结果,这些结果表明首次在天然晶体中“看到”和测量时间的化学和结构记录是可能的。我的 HQP 团队还将使用新的 ZAPLab 工具来分析非洲和加拿大巨大撞击中受到冲击的微晶体,以确定陨石坑事件期间矿物 U-Pb 测年行为的变化,以便我们能够更自信地解释我们在太阳系其他天体的陨石碎片中发现的内容。 通过这个项目,我的团队将解决一些基本问题,例如准确了解古代火星上水何时流动。与此同时,ZAPLab的研究将侧重于解决经济地质问题,例如加拿大北极地区矿石和矿床的年龄和演化、萨德伯里影响结构以及其他应用科学培训和知识转移有利于工业和提高ZAPLab研究能力的地方。我在测量晶体取向和化学微观结构方面的专业知识也有助于帮助其他人测试制造材料的强度和耐腐蚀性,在拟议的发现资助期间,我将继续与化学家和工程师合作并培训一系列项目,例如正在考虑改进金属合金,以确保放射性废物与环境的长期隔离。我的团队在向公众传播我们的研究结果以及向加拿大工业界传播知识方面有着出色的记录,并且上述研究的所有结果都将利用一切机会进行传播,就像加拿大广播公司最近关于我的火星研究的在线文章以及对加拿大矿产勘探集团的实地考察一样。通过这种方式,我提出的研究计划将带来有关材料年龄和/或性质的令人兴奋的额外发现,从而造福加拿大科学和工业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Moser, Desmond其他文献
A terrestrial perspective on using ex situ shocked zircons to date lunar impacts
- DOI:
10.1130/g37059.1 - 发表时间:
2015-11-01 - 期刊:
- 影响因子:5.8
- 作者:
Cavosie, Aaron J.;Erickson, Timmons M.;Moser, Desmond - 通讯作者:
Moser, Desmond
Moser, Desmond的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Moser, Desmond', 18)}}的其他基金
Nanogeochronology of Earth and Planetary Materials
地球和行星材料的纳米地质年代学
- 批准号:
RGPIN-2019-05911 - 财政年份:2022
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Nanogeochronology of Earth and Planetary Materials
地球和行星材料的纳米地质年代学
- 批准号:
RGPIN-2019-05911 - 财政年份:2021
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Nanogeochronology of Earth and Planetary Materials
地球和行星材料的纳米地质年代学
- 批准号:
RGPIN-2019-05911 - 财政年份:2020
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Nanogeochronology of Earth and Planetary Materials
地球和行星材料的纳米地质年代学
- 批准号:
RGPIN-2019-05911 - 财政年份:2019
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Geochronology of Inner Solar System Materials Down to Atom Scale
内太阳系材料的地质年代学直至原子尺度
- 批准号:
RGPIN-2014-05823 - 财政年份:2017
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Geochronology of Inner Solar System Materials Down to Atom Scale
内太阳系材料的地质年代学直至原子尺度
- 批准号:
RGPIN-2014-05823 - 财政年份:2016
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Geochronology of Inner Solar System Materials Down to Atom Scale
内太阳系材料的地质年代学直至原子尺度
- 批准号:
RGPIN-2014-05823 - 财政年份:2015
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Geochronology of Inner Solar System Materials Down to Atom Scale
内太阳系材料的地质年代学直至原子尺度
- 批准号:
RGPIN-2014-05823 - 财政年份:2014
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Geochronology of planetary and resource evolution
行星地质年代学和资源演化
- 批准号:
327164-2009 - 财政年份:2013
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Geochronology of planetary and resource evolution
行星地质年代学和资源演化
- 批准号:
327164-2009 - 财政年份:2012
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Multispacecraft Study of the Spatio-Temporal Variability of Solar Energetic Particles (SEP) Profiles in the Inner Heliosphere
内日光层太阳高能粒子 (SEP) 剖面时空变化的多航天器研究
- 批准号:
2325313 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别:
Standard Grant
Development of an operational solar wind model based on novel inner boundary conditions
基于新颖内部边界条件的可操作太阳风模型的开发
- 批准号:
2889121 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别:
Studentship
Plasma thermodynamics of the inner heliosphere with Solar Orbiter and Parker Solar Probe
使用太阳轨道飞行器和帕克太阳探测器研究日光层内层的等离子体热力学
- 批准号:
2743129 - 财政年份:2022
- 资助金额:
$ 3.13万 - 项目类别:
Studentship
ANSWERS: Understanding and Forecasting Solar Energetic Particles in the Inner Solar System and Earth's Magnetosphere
答案:了解和预测内太阳系和地球磁层中的太阳高能粒子
- 批准号:
2149771 - 财政年份:2022
- 资助金额:
$ 3.13万 - 项目类别:
Continuing Grant
The Evolution of Material in the Inner Solar System: Elucidating the History of Enstatite Chondrites
内太阳系物质的演化:阐明顽火辉石球粒陨石的历史
- 批准号:
2604115 - 财政年份:2021
- 资助金额:
$ 3.13万 - 项目类别:
Studentship
New Applicant Scheme Consolidated Grant Application in Solar System Studies- Towards the Solar System's Edge: Exploring the Inner Oort Cloud
新申请人计划太阳系研究综合拨款申请-走向太阳系边缘:探索内部奥尔特云
- 批准号:
ST/V000691/1 - 财政年份:2021
- 资助金额:
$ 3.13万 - 项目类别:
Research Grant
AGS-PRF: An Observational-based Modeling Approach for Solar Energetic Particle Access to the Equatorial Inner Magnetosphere
AGS-PRF:一种基于观测的太阳高能粒子进入赤道内磁层的建模方法
- 批准号:
2028492 - 财政年份:2020
- 资助金额:
$ 3.13万 - 项目类别:
Fellowship Award
SWQU: Improving Space Weather Predictions with Data-Driven Models of the Solar Atmosphere and Inner Heliosphere
SWQU:利用太阳大气层和内日光层的数据驱动模型改进空间天气预报
- 批准号:
2028154 - 财政年份:2020
- 资助金额:
$ 3.13万 - 项目类别:
Standard Grant
Solar System Seismology: Probing the Inner Structure of Planets
太阳系地震学:探测行星的内部结构
- 批准号:
542485-2019 - 财政年份:2019
- 资助金额:
$ 3.13万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
The evolution of material in the inner solar system: Elucidating the history of enstatite chondrites
太阳系内部物质的演化:阐明顽辉石球粒陨石的历史
- 批准号:
2298144 - 财政年份:2019
- 资助金额:
$ 3.13万 - 项目类别:
Studentship














{{item.name}}会员




