SWQU: Improving Space Weather Predictions with Data-Driven Models of the Solar Atmosphere and Inner Heliosphere
SWQU:利用太阳大气层和内日光层的数据驱动模型改进空间天气预报
基本信息
- 批准号:2028154
- 负责人:
- 金额:$ 79.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Solar wind, a stream of charged particles emitted from the Sun, is a key driver of space weather at Earth and throughout the solar system. Extreme space weather events occur when disturbances in the Sun’s atmosphere, called coronal mass ejections (CMEs), reach the Earth’s magnetosphere. Space weather phenomena can create conditions hazardous for humans and instruments in space and on the ground. Accurately forecasting space weather is thus increasingly important for our technology-dependent society and will be critical while planning and operating missions to the Moon and Mars. This project will develop a new generation of software capable of near real-time modeling from the Sun to Earth's orbit (inner heliosphere) and predicting intense space weather events. The tools developed by this project can not only dramatically improve the accuracy and performance of currently operational space weather models, but also allow the broader scientific community to experiment with and extend these tools to create new capabilities that could eventually be transformational for operational activity. This work will also provide a leap forward in the computation and simulation of complex, turbulent plasma systems and is expected to have impact in several areas, including space physics and astrophysics. The project team includes both early-career and senior researchers at U.S. universities, NASA centers, national labs, and in the private sector; support for the non-academic collaborating institutions is to be provided by NASA.The structuring of the solar wind into fast and slow streams is the source of recurrent geomagnetic activity. The largest geomagnetic storms are caused by CMEs propagating through and interacting with the solar wind. The connection of the interplanetary magnetic field to CME-related shocks and impulsive solar flares determines where solar energetic particles propagate. Therefore, data-driven modeling of stream interactions in the background solar wind, and CMEs propagating through it, is a necessary part of space weather forecasting. At present NOAA Space Weather Prediction Center forecasts the background solar wind and CME arrival times using empirically driven models. The goal of this project is to develop a data-driven, time-dependent model that will improve the current state of the art. The new model will consist of: 1) a surface flux transport model, 2) potential field solver, and 3) an MHD solar wind model. It will provide more accurate solutions and be scalable on massively parallel computing systems, including Graphic Processor Units. Products from this project will provide a leap forward in the computation and simulation of complex plasma systems involving multiple discontinuities. The developed software will also be useful for astrophysical problems possessing a distinct spherical geometry, including exoplanets, early sun, and sun-like stars. This award is made as a part of the joint NSF-NASA pilot program on Next Generation Software for Data-driven Models of Space Weather with Quantified Uncertainties (SWQU). All software developed as a result of this award will be made available by the awardee free of charge for non-commercial use; the software license will permit modification and redistribution of the software free of charge for non-commercial use.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
太阳风,一种从太阳发射的带电粒子流,是地球和整个太阳系空间天气的关键驱动因素。当太阳大气中的扰动,即日冕物质抛射(cme)到达地球磁层时,就会发生极端的太空天气事件。空间天气现象会对空间和地面上的人类和仪器造成危险。因此,对于我们这个依赖技术的社会来说,准确预测太空天气变得越来越重要,在规划和执行月球和火星任务时也将至关重要。该项目将开发新一代软件,能够从太阳到地球轨道(内日球层)进行近实时建模,并预测强烈的太空天气事件。该项目开发的工具不仅可以极大地提高当前操作空间天气模型的准确性和性能,而且还允许更广泛的科学界对这些工具进行实验和扩展,以创造最终可能为操作活动带来变革的新能力。这项工作还将为复杂的湍流等离子体系统的计算和模拟提供一个飞跃,并有望在包括空间物理学和天体物理学在内的几个领域产生影响。项目团队包括美国大学、NASA中心、国家实验室和私营部门的早期和高级研究人员;对非学术合作机构的支持将由NASA提供。将太阳风分成快流和慢流的结构是周期性地磁活动的来源。最大的地磁风暴是由cme通过太阳风传播并与太阳风相互作用引起的。行星际磁场与日冕物质抛射相关的冲击和脉冲太阳耀斑的联系决定了太阳高能粒子的传播方向。因此,数据驱动的背景太阳风流相互作用模型,以及通过它传播的日冕物质抛射,是空间天气预报的必要组成部分。目前,NOAA空间天气预报中心利用经验驱动模型预测背景太阳风和日冕物质抛射到达时间。该项目的目标是开发一个数据驱动的、依赖于时间的模型,以改进当前的技术状态。新模型将包括:1)地表通量输运模型,2)势场求解器,3)MHD太阳风模型。它将提供更精确的解决方案,并可在大规模并行计算系统(包括图形处理器单元)上进行扩展。该项目的产品将在涉及多个不连续的复杂等离子体系统的计算和模拟方面提供一个飞跃。开发的软件还将对具有独特球面几何的天体物理问题有用,包括系外行星、早期太阳和类太阳恒星。该合同是NSF-NASA联合试点项目“具有量化不确定性的空间天气数据驱动模型的下一代软件”(SWQU)的一部分。所有因该奖项而开发的软件将由获奖者免费提供,用于非商业用途;软件许可证将允许修改和重新分发软件,免费用于非商业用途。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Empirically Driven MHD Model to Predict the Solar Wind at Parker Solar Probe and Solar Orbiter during the Current Solar Minimum
经验驱动的 MHD 模型可预测当前太阳极小期期间帕克太阳探测器和太阳轨道飞行器的太阳风
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Kim, T. K.;Pogorelov, N.;Arge, C. N.;Jones-Mecholsky, S. I.
- 通讯作者:Jones-Mecholsky, S. I.
Can Fortran’s ‘do concurrent’ Replace Directives for Accelerated Computing?
Fortran 的“并发”能否取代加速计算指令?
- DOI:10.1007/978-3-030-97759-7_1
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Stulajter, M. M.
- 通讯作者:Stulajter, M. M.
Improving predictions of the background solar wind using coronal and solar wind observations as constraints
使用日冕和太阳风观测作为约束改进背景太阳风的预测
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Arge, Charles;Henney, Carl;Jones, Shaela;Staeben, James;Leisner, Andrew;Uritsky, Vadim;Da Silva, Daniel;Schonfeld, Samuel
- 通讯作者:Schonfeld, Samuel
Ensemble Simulations of the 2012 July 12 Coronal Mass Ejection with the Constant-turn Flux Rope Model
- DOI:10.3847/1538-4357/ac73f3
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:T. Singh;Tae K. Kim;N. Pogorelov;C. Arge
- 通讯作者:T. Singh;Tae K. Kim;N. Pogorelov;C. Arge
Predicting the Solar Wind Using Empirically-driven Data-constrained Heliospheric MHD Model
使用经验驱动的数据约束日光层 MHD 模型预测太阳风
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kim, T.;Pogorelov, N
- 通讯作者:Pogorelov, N
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nikolai Pogorelov其他文献
Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus
- DOI:
10.1007/s11214-015-0206-3 - 发表时间:
2015-10-29 - 期刊:
- 影响因子:7.400
- 作者:
Justin C. Kasper;Robert Abiad;Gerry Austin;Marianne Balat-Pichelin;Stuart D. Bale;John W. Belcher;Peter Berg;Henry Bergner;Matthieu Berthomier;Jay Bookbinder;Etienne Brodu;David Caldwell;Anthony W. Case;Benjamin D. G. Chandran;Peter Cheimets;Jonathan W. Cirtain;Steven R. Cranmer;David W. Curtis;Peter Daigneau;Greg Dalton;Brahmananda Dasgupta;David DeTomaso;Millan Diaz-Aguado;Blagoje Djordjevic;Bill Donaskowski;Michael Effinger;Vladimir Florinski;Nichola Fox;Mark Freeman;Dennis Gallagher;S. Peter Gary;Tom Gauron;Richard Gates;Melvin Goldstein;Leon Golub;Dorothy A. Gordon;Reid Gurnee;Giora Guth;Jasper Halekas;Ken Hatch;Jacob Heerikuisen;George Ho;Qiang Hu;Greg Johnson;Steven P. Jordan;Kelly E. Korreck;Davin Larson;Alan J. Lazarus;Gang Li;Roberto Livi;Michael Ludlam;Milan Maksimovic;James P. McFadden;William Marchant;Bennet A. Maruca;David J. McComas;Luciana Messina;Tony Mercer;Sang Park;Andrew M. Peddie;Nikolai Pogorelov;Matthew J. Reinhart;John D. Richardson;Miles Robinson;Irene Rosen;Ruth M. Skoug;Amanda Slagle;John T. Steinberg;Michael L. Stevens;Adam Szabo;Ellen R. Taylor;Chris Tiu;Paul Turin;Marco Velli;Gary Webb;Phyllis Whittlesey;Ken Wright;S. T. Wu;Gary Zank - 通讯作者:
Gary Zank
Nikolai Pogorelov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nikolai Pogorelov', 18)}}的其他基金
NSF-BSF: Collaborative Research: Rankine-Hugoniot Conditions Relating the Gyrotropic Regions of Collisionless Shocks in Non-Thermal Plasma
NSF-BSF:合作研究:与非热等离子体中无碰撞激波的回旋区域相关的兰金-于戈尼奥条件
- 批准号:
2010450 - 财政年份:2020
- 资助金额:
$ 79.96万 - 项目类别:
Continuing Grant
Collaborative Research: Travel Supplement for Frontera's "Multi-scale, MHD-Kinetic Modeling of the Solar Wind and its Interaction with the Local Interstellar Medium"
合作研究:Frontera 的“太阳风的多尺度、MHD 动力学模型及其与当地星际介质的相互作用”的旅行补充材料
- 批准号:
2031611 - 财政年份:2020
- 资助金额:
$ 79.96万 - 项目类别:
Standard Grant
Modeling Physical Processes in the Solar Wind and Local Interstellar Medium with Multi-Scale Fluid-Kinetic Simulation Suite
使用多尺度流体动力学仿真套件对太阳风和当地星际介质中的物理过程进行建模
- 批准号:
1811176 - 财政年份:2018
- 资助金额:
$ 79.96万 - 项目类别:
Standard Grant
Modeling Physical Processes in the Solar Wind and Local Interstellar Medium with a Multi-Scale Fluid-Kinetic Simulation Suite
使用多尺度流体动力学模拟套件对太阳风和当地星际介质中的物理过程进行建模
- 批准号:
1615206 - 财政年份:2016
- 资助金额:
$ 79.96万 - 项目类别:
Standard Grant
SHINE: Solar Wind with a Time-dependent, MHD, Interplanetary Scintillation Tomography
SHINE:太阳风与时间相关的 MHD 行星际闪烁断层扫描
- 批准号:
1358386 - 财政年份:2014
- 资助金额:
$ 79.96万 - 项目类别:
Continuing Grant
Modeling Heliophysics and Astrophysics Phenomena with a Multi-Scale Fluid-Kinetic Simulation Suite
使用多尺度流体动力学模拟套件对太阳物理学和天体物理学现象进行建模
- 批准号:
1144120 - 财政年份:2012
- 资助金额:
$ 79.96万 - 项目类别:
Standard Grant
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Radium-223 Combination Therapy Space; Improving Response and Clarifying Toxicities
Radium-223 联合治疗空间;
- 批准号:
10577850 - 财政年份:2020
- 资助金额:
$ 79.96万 - 项目类别:
The Radium-223 Combination Therapy Space; Improving Response and Clarifying Toxicities
Radium-223 联合治疗空间;
- 批准号:
10356921 - 财政年份:2020
- 资助金额:
$ 79.96万 - 项目类别:
DASI Track 2: MagStar- Improving the Spatial Coverage of United States Magnetometers for Space Weather Research and Operations
DASI 轨道 2:MagStar - 改善美国磁力计的空间覆盖范围,用于空间天气研究和操作
- 批准号:
1933040 - 财政年份:2020
- 资助金额:
$ 79.96万 - 项目类别:
Standard Grant
The Radium-223 Combination Therapy Space; Improving Response and Clarifying Toxicities
Radium-223 联合治疗空间;
- 批准号:
9973321 - 财政年份:2020
- 资助金额:
$ 79.96万 - 项目类别:
Development of a background music design for office space toward improving the workers' mental health
开发办公空间背景音乐设计以改善员工心理健康
- 批准号:
19K12691 - 财政年份:2019
- 资助金额:
$ 79.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AGS-PRF: Improving Space Weather and Space Climate Predictions by Investigating and Modeling Surface Flux Transport on the Sun
AGS-PRF:通过研究和模拟太阳表面通量传输来改进空间天气和空间气候预测
- 批准号:
1624438 - 财政年份:2017
- 资助金额:
$ 79.96万 - 项目类别:
Fellowship Award
Improving LETKF assimilation of remotely-sensed dense observations through direct model-space covariance localization
通过直接模型空间协方差定位改进遥感密集观测的 LETKF 同化
- 批准号:
17H07352 - 财政年份:2017
- 资助金额:
$ 79.96万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Improving MAGagnetogram (MAG4) Forecasting of Severe Space Weather Drivers by Measuring Magnetic Nonpotentiality of Active Regions Using HMI/SDO Vector Magnetograms
使用 HMI/SDO 矢量磁图测量活动区域的磁无势,改进恶劣空间天气驱动因素的磁磁图 (MAG4) 预报
- 批准号:
1748910 - 财政年份:2017
- 资助金额:
$ 79.96万 - 项目类别:
Continuing Grant
Improving MAGagnetogram (MAG4) Forecasting of Severe Space Weather Drivers by Measuring Magnetic Nonpotentiality of Active Regions Using HMI/SDO Vector Magnetograms
使用 HMI/SDO 矢量磁图测量活动区域的磁无势,改进恶劣空间天气驱动因素的磁磁图 (MAG4) 预报
- 批准号:
1601926 - 财政年份:2016
- 资助金额:
$ 79.96万 - 项目类别:
Continuing Grant
Improving cell fate conversion by tracking cells and RNA over time and space
通过随时间和空间追踪细胞和 RNA 来改善细胞命运转换
- 批准号:
9249928 - 财政年份:2015
- 资助金额:
$ 79.96万 - 项目类别: