Extreme Photonics - from imaging to control -

极限光子学 - 从成像到控制 -

基本信息

  • 批准号:
    RGPIN-2014-03835
  • 负责人:
  • 金额:
    $ 4.3万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Light plays an essential role in our daily lives. Light allows us to see, and without it, we would have difficulty in performing even the simplest of tasks. Perhaps because of this, we frequently associate light with seeing and imaging. However, seeing is not the only thing that light can do. With the advent of lasers, and especially intense lasers with very short durations, scientists can now control how molecules dissociate, drive bound electrons in matter to induce highly nonlinear processes, and even replicate extreme conditions of matter at the core of giant planets like Jupiter.**To date, such experiments have been performed using visible and near-infrared lasers. However, using cutting-edge lasers (such as those at the Canadian Advanced Laser Light Source), one can now make laser-like coherent light sources with high power at both the very short (X-ray) and the very long wavelengths (far-infrared and terahertz radiation). My research has been focusing on the generation of intense light sources at such non-conventional wavelengths, and studying the interaction of these Extreme Photon sources with various matter. This is a new field of research, which I have dubbed "Extreme Photonics". Some of these works are unearthing fascinating phenomena, and simulations are providing new insights to their mechanisms.**Building on my previous Discovery grant, I propose here to extend my research in "Extreme Photonics", by further increasing the intensity of our Extreme Photon sources, and using them to coherently control and image matter at ultrafast timescales, to advance research in areas and sectors of importance to Canada. A major focus of this Discovery grant will be on CONTROL. For example, I will use Extreme Photon sources to study how one could excite and control vibrations of the virus capsid (the protein shell of the virus that protects its inner genetic material). By finding the sweet spot to break the capsid and inactivating viruses, such information could be used to produce safer vaccines. I will also study how intense terahertz radiation could induce and control local openings in DNA, for potential use in drug delivery. **"Extreme Photonics" should also prepare us for the coming era of Big Data. With the amount of data in our world exploding, there is an urgent need to process and read/write data at much higher speeds. We will use our Extreme Photon sources to develop materials and methods for data storage, where switching of bit information could be done at speeds more than 1000 times faster than our current limit. We will also drive graphene (a one-atom thick layer of graphite, earning A. Geim and K. Novoselov the 2010 Nobel Prize) at extremely high speeds and at very high electric fields using our Extreme Photon sources, to see how we could make processors smaller and faster.**In the extremely ultrafast limit, we will study how we could use intense and ultimately short pulses to control material processes at the level of electrons for desired outcome. A bound electron "orbits" a hydrogen atom in about 150 attoseconds, where 1 attosecond is a billionth of a billionth of a second. By using intense X-rays with attosecond duration, one could think of controlling the collective motion of electrons in molecules, whose knowledge could be used to design and synthesize advanced materials for harvesting solar energy.**As one can see, the potential socio-economic impact of ultrafast science is huge. This is also underlined by the various several-100-million-dollar ultrafast laser projects under development in Europe and Russia. Conversely, harnessing Extreme Photonics could be a Canadian way of responding to such huge facilities, thus contributing in maintaining Canada's leadership in this highly competitive field.
光在我们的日常生活中起着至关重要的作用。光使我们能够看到,没有它,我们将很难执行即使是最简单的任务。也许正因为如此,我们经常将光与视觉和成像联系在一起。然而,光并不是光唯一能做的事情。随着激光的出现,特别是持续时间很短的强激光,科学家现在可以控制分子如何离解,驱动物质中的束缚电子以诱导高度非线性过程,甚至复制木星等巨行星核心物质的极端条件。迄今为止,已经使用可见光和近红外激光进行了这样的实验。然而,使用尖端的激光器(例如加拿大先进激光光源),现在可以在非常短的波长(X射线)和非常长的波长(远红外和太赫兹辐射)上制造高功率的类似激光的相干光源。我的研究一直专注于在这种非常规波长下产生强光源,并研究这些极端光子源与各种物质的相互作用。这是一个新的研究领域,我称之为“极端光子学”。其中一些工作正在发掘迷人的现象,模拟正在为它们的机制提供新的见解。在我以前的发现补助金的基础上,我在这里建议通过进一步增加我们的极端光子源的强度来扩展我在“极端光子学”方面的研究,并利用它们在超快时间尺度上连贯地控制和成像物质,以推进对加拿大重要的领域和部门的研究。这项发现赠款的一个主要重点将是控制。例如,我将使用极端光子源来研究如何激发和控制病毒衣壳(保护其内部遗传物质的病毒蛋白质外壳)的振动。通过找到破坏衣壳和灭活病毒的最佳位置,这些信息可以用于生产更安全的疫苗。我还将研究强烈的太赫兹辐射如何诱导和控制DNA中的局部开口,以用于药物输送。**“极端光子学”还应该为即将到来的大数据时代做好准备。随着世界上数据量的爆炸式增长,迫切需要以更高的速度处理和读取/写入数据。我们将使用我们的极端光子源来开发数据存储的材料和方法,其中比特信息的交换速度可以比我们目前的限制快1000倍以上。我们还将驱动石墨烯(一个原子厚的石墨层,获得A。Geim和K. Novoselov(2010年诺贝尔奖获得者)使用我们的极光子源在极高速度和极高电场下进行测试,看看我们如何使处理器变得更小、更快。**在极端超快的极限,我们将研究如何使用强烈的,最终短的脉冲来控制材料的过程在电子的水平,以达到预期的结果。一个束缚电子绕一个氢原子“公转”大约需要150阿秒,其中1阿秒是十亿分之一秒的十亿分之一。通过使用阿秒持续时间的强X射线,人们可以想到控制分子中电子的集体运动,其知识可以用于设计和合成收集太阳能的先进材料。正如人们所看到的,超快科学的潜在社会经济影响是巨大的。欧洲和俄罗斯正在开发的各种价值数亿美元的超快激光项目也强调了这一点。相反,利用极端光子学可能是加拿大应对如此巨大设施的一种方式,从而有助于保持加拿大在这一竞争激烈的领域的领导地位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ozaki, Tsuneyuki其他文献

Subcycle Terahertz Nonlinear Optics
  • DOI:
    10.1103/physrevlett.121.143901
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Chai, Xin;Ropagnol, Xavier;Ozaki, Tsuneyuki
  • 通讯作者:
    Ozaki, Tsuneyuki
Accelerated inactivation of M13 bacteriophage using millijoule femtosecond lasers
  • DOI:
    10.1002/jbio.201900001
  • 发表时间:
    2019-11-20
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Berchtikou, Aziz;Greschner, Andrea A.;Ozaki, Tsuneyuki
  • 通讯作者:
    Ozaki, Tsuneyuki
Frequency domain optical parametric amplification.
  • DOI:
    10.1038/ncomms4643
  • 发表时间:
    2014-05-07
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Schmidt, Bruno E.;Thire, Nicolas;Boivin, Maxime;Laramee, Antoine;Poitras, Francois;Lebrun, Guy;Ozaki, Tsuneyuki;Ibrahim, Heide;Legare, Francois
  • 通讯作者:
    Legare, Francois
Nonlinear terahertz field-induced carrier dynamics in photoexcited epitaxial monolayer graphene
  • DOI:
    10.1103/physrevb.91.035422
  • 发表时间:
    2015-01-16
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Hafez, Hassan A.;Al-Naib, Ibraheem;Ozaki, Tsuneyuki
  • 通讯作者:
    Ozaki, Tsuneyuki
Terahertz detection using spectral domain interferometry
  • DOI:
    10.1364/ol.37.004338
  • 发表时间:
    2012-10-15
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Sharma, Gargi;Singh, Kanwarpal;Ozaki, Tsuneyuki
  • 通讯作者:
    Ozaki, Tsuneyuki

Ozaki, Tsuneyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ozaki, Tsuneyuki', 18)}}的其他基金

Extreme Photon Science and Technology with a Twist
扭曲的极限光子科学与技术
  • 批准号:
    RGPIN-2019-06811
  • 财政年份:
    2022
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Discovery Grants Program - Individual
Extreme Photon Science and Technology with a Twist
扭曲的极限光子科学与技术
  • 批准号:
    RGPIN-2019-06811
  • 财政年份:
    2021
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Discovery Grants Program - Individual
Femtosecond high Average-power Micro-joule Extreme-Ultraviolet Source (FAMEUS)
飞秒高平均功率微焦极紫外光源(FAMEUS)
  • 批准号:
    565914-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Alliance Grants
Synchronized impulsive stimulated Raman scattering to inactivate SARS-CoV-2 for slowing and stopping the transmission of COVID-19
同步脉冲受激拉曼散射可灭活 SARS-CoV-2,从而减缓和阻止 COVID-19 的传播
  • 批准号:
    555266-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Alliance Grants
Extreme Photon Science and Technology with a Twist
扭曲的极限光子科学与技术
  • 批准号:
    RGPIN-2019-06811
  • 财政年份:
    2020
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Discovery Grants Program - Individual
Cutting-edge elliptically and circularly polarized terahertz technology
尖端椭圆和圆偏振太赫兹技术
  • 批准号:
    RTI-2020-00748
  • 财政年份:
    2019
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Research Tools and Instruments
Thz detection using stokes-mueller polarimetry (phase 1)
使用 stokes-mueller 偏振法进行太赫兹检测(第 1 阶段)
  • 批准号:
    505829-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Idea to Innovation
Electrically biased terahertz chemical microscope (Market Assessment)
电偏置太赫兹化学显微镜(市场评估)
  • 批准号:
    545173-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Idea to Innovation
Extreme Photon Science and Technology with a Twist
扭曲的极限光子科学与技术
  • 批准号:
    RGPIN-2019-06811
  • 财政年份:
    2019
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Discovery Grants Program - Individual
Unravelling the terahertz electronic properties of graphene for applications in optoelectronics
揭示石墨烯的太赫兹电子特性在光电子学中的应用
  • 批准号:
    494029-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Strategic Projects - Group

相似海外基金

Developing surfAce enhaNCEd infrared absorption photonics Quantum Devices for multiple vibrational modes imaging (DANCE-QD)
开发用于多振动模式成像的表面增强红外吸收光子量子器件 (DANCE-QD)
  • 批准号:
    2893075
  • 财政年份:
    2023
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Studentship
One-chip near-infrared computational imaging using integrated photonics
使用集成光子学的单芯片近红外计算成像
  • 批准号:
    23H05444
  • 财政年份:
    2023
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
High resolution multimodal SPR imaging instrumentation for the development of cell-based photonics biosensors
用于开发基于细胞的光子生物传感器的高分辨率多模态 SPR 成像仪器
  • 批准号:
    RGPIN-2015-05188
  • 财政年份:
    2022
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Discovery Grants Program - Individual
Photonics-based Fluorescence Imaging for Research, Diagnostics, and Pathology
用于研究、诊断和病理学的基于光子学的荧光成像
  • 批准号:
    10546493
  • 财政年份:
    2022
  • 资助金额:
    $ 4.3万
  • 项目类别:
2022 Optics and Photonics in Medicine and Biology Gordon Research Conference and Seminar
2022年光学与光子学在医学和生物学戈登研究会议暨研讨会
  • 批准号:
    10462890
  • 财政年份:
    2022
  • 资助金额:
    $ 4.3万
  • 项目类别:
Photonics-based Fluorescence Imaging for Research, Diagnostics, and Pathology
用于研究、诊断和病理学的基于光子学的荧光成像
  • 批准号:
    10329143
  • 财政年份:
    2022
  • 资助金额:
    $ 4.3万
  • 项目类别:
Ubiquitous Terahertz Photonics: enabling technology for the future imaging systems and wireless communications
无处不在的太赫兹光子学:未来成像系统和无线通信的支持技术
  • 批准号:
    CRC-2015-00182
  • 财政年份:
    2022
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Canada Research Chairs
High resolution multimodal SPR imaging instrumentation for the development of cell-based photonics biosensors
用于开发基于细胞的光子生物传感器的高分辨率多模态 SPR 成像仪器
  • 批准号:
    RGPIN-2015-05188
  • 财政年份:
    2021
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Discovery Grants Program - Individual
Photonics probing of DNA mass density spatial structure for cancer diagnostics
用于癌症诊断的 DNA 质量密度空间结构的光子学探测
  • 批准号:
    10196725
  • 财政年份:
    2021
  • 资助金额:
    $ 4.3万
  • 项目类别:
Ubiquitous Terahertz Photonics: Enabling Technology For The Future Imaging Systems And Wireless Communications
无处不在的太赫兹光子学:未来成像系统和无线通信的支持技术
  • 批准号:
    CRC-2015-00182
  • 财政年份:
    2021
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Canada Research Chairs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了