Statistical Methods for Irregularly Measured Longitudinal Data

不规则测量纵向数据的统计方法

基本信息

  • 批准号:
    RGPIN-2014-03989
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

We live in a data-rich society, and a particularly useful form of data is when the same questions or measures are collected repeatedly over time on the same subjects. This allows researchers to quantify trends over time. Often practical constraints lead to variation in the times at which measurements are taken. Indeed, sometimes study organisers may request that measurements be taken more often after an abnormal reading is observed. The end result is that the times at which measurements are taken is associated with the measurements themselves.**In order to capture changes in outcomes over time correctly, analysis must account for the potential for the number and timing of measurements to be related to the outcomes; failure to do so could lead to a seriously distorted picture of the dynamics of the process over time. This work will focus on statistical methods that account for the fact that the timings of measurements, as well as the measurements taken at each visit, give important information about the outcomes of interest.**Particular areas of focus will be improving the validity of methods, improving their efficiency, and improving their accessibility. **All methods for this type of data make assumptions. The current approach to analysis risks violating some of these assumptions because it disregards important information on the visit process when setting up models. We propose an approach to analysis that makes better use of the available information and so reduces the risk of bias in the results.**The most popular method of analysis for this type of data is known to be inefficient. That is, it does not extract as much information from the data as it could. This is wasteful because data are often expensive to obtain. There is a class of methods known as doubly robust methods that are generally more efficient, and we will aim to expand this class of methods to handle longitudinal data measured at irregular times.**Finally, to be useful, methods need to be accessible. That is, they need to be simple enough that scientists doing routine analyses of data can use them. We propose to develop a new approach to analysis that is straightforward to use in practice, and likely also to be more efficient than the approaches that are currently used.**The proposed work will thus strengthen the analysis of longitudinal data measured at irregular times by providing methods that improve validity, efficiency and accessibility.
我们生活在一个数据丰富的社会,一种特别有用的数据形式是,随着时间的推移,对同一主题重复收集相同的问题或措施。这使研究人员能够量化一段时间内的趋势。通常,实际约束导致进行测量的时间的变化。事实上,有时研究组织者可能会在观察到异常阅读后要求更频繁地进行测量。最终的结果是,测量的时间与测量本身相关联。**为了正确地捕捉结果随时间的变化,分析必须考虑到测量的数量和时间与结果之间的可能联系;不这样做可能导致对过程随时间的动态的严重扭曲。这项工作将侧重于统计方法,这些方法考虑到测量的时间以及每次访问时进行的测量提供了有关感兴趣结果的重要信息。特别关注的领域将是提高方法的有效性,提高其效率,并改善其可获得性。** 这类数据的所有方法都有假设。目前的分析方法有违反其中一些假设的风险,因为它在建立模型时忽略了访问过程中的重要信息。我们提出了一种分析方法,可以更好地利用现有信息,从而降低结果中的偏倚风险。对这类数据最流行的分析方法是众所周知的效率低下。也就是说,它没有从数据中提取尽可能多的信息。这是一种浪费,因为获取数据通常很昂贵。有一类方法被称为双稳健方法,通常更有效,我们的目标是扩展这类方法来处理不规则时间测量的纵向数据。最后,要有用,方法必须是可访问的。也就是说,它们需要足够简单,以便科学家在进行常规数据分析时可以使用它们。我们建议开发一种新的分析方法,这种方法在实践中使用起来很简单,而且可能比目前使用的方法更有效。因此,拟议的工作将通过提供提高有效性、效率和可获得性的方法,加强对不定期测量的纵向数据的分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pullenayegum, Eleanor其他文献

Shared Electronic Vascular Risk Decision Support in Primary Care Computerization of Medical Practices for the Enhancement of Therapeutic Effectiveness (COMPETE III) Randomized Trial
  • DOI:
    10.1001/archinternmed.2011.471
  • 发表时间:
    2011-10-24
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Holbrook, Anne;Pullenayegum, Eleanor;Curnew, Greg
  • 通讯作者:
    Curnew, Greg
EQ-5D-derived health utilities and minimally important differences for chronic health conditions: 2011 Commonwealth Fund Survey of Sicker Adults in Canada
  • DOI:
    10.1007/s11136-016-1336-0
  • 发表时间:
    2016-12-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Tsiplova, Kate;Pullenayegum, Eleanor;Xie, Feng
  • 通讯作者:
    Xie, Feng
From Childhood to Adulthood: The Trajectory of Damage in Patients With Juvenile-Onset Systemic Lupus Erythematosus
  • DOI:
    10.1002/acr.23199
  • 发表时间:
    2017-11-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Lim, Lily S. H.;Pullenayegum, Eleanor;Silverman, Earl
  • 通讯作者:
    Silverman, Earl
Transforming Latent Utilities to Health Utilities: East Does Not Meet West
  • DOI:
    10.1002/hec.3444
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Xie, Feng;Pullenayegum, Eleanor;Igarashi, Ataru
  • 通讯作者:
    Igarashi, Ataru
A randomized, blinded, placebo-controlled trial comparing antibody responses to homeopathic and conventional vaccines in university students
  • DOI:
    10.1016/j.vaccine.2018.08.082
  • 发表时间:
    2018-11-19
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Loeb, Mark;Russell, Margaret L.;Pullenayegum, Eleanor
  • 通讯作者:
    Pullenayegum, Eleanor

Pullenayegum, Eleanor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pullenayegum, Eleanor', 18)}}的其他基金

Longitudinal data subject to irregular observation: developing methods for variable selection, causal inference, and measurement error
不规则观察的纵向数据:开发变量选择、因果推断和测量误差的方法
  • 批准号:
    RGPIN-2021-02733
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Longitudinal data subject to irregular observation: developing methods for variable selection, causal inference, and measurement error
不规则观察的纵向数据:开发变量选择、因果推断和测量误差的方法
  • 批准号:
    RGPIN-2021-02733
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for Irregularly Measured Longitudinal Data
不规则测量纵向数据的统计方法
  • 批准号:
    RGPIN-2014-03989
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for Irregularly Measured Longitudinal Data
不规则测量纵向数据的统计方法
  • 批准号:
    RGPIN-2014-03989
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for Irregularly Measured Longitudinal Data
不规则测量纵向数据的统计方法
  • 批准号:
    RGPIN-2014-03989
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for Irregularly Measured Longitudinal Data
不规则测量纵向数据的统计方法
  • 批准号:
    RGPIN-2014-03989
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-parametric modelling of longitudinal data when the observation process is neither completely random nor completely deterministic
当观测过程既不完全随机也不完全确定时,纵向数据的半参数建模
  • 批准号:
    356042-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-parametric modelling of longitudinal data when the observation process is neither completely random nor completely deterministic
当观测过程既不完全随机也不完全确定时,纵向数据的半参数建模
  • 批准号:
    356042-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-parametric modelling of longitudinal data when the observation process is neither completely random nor completely deterministic
当观测过程既不完全随机也不完全确定时,纵向数据的半参数建模
  • 批准号:
    356042-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-parametric modelling of longitudinal data when the observation process is neither completely random nor completely deterministic
当观测过程既不完全随机也不完全确定时,纵向数据的半参数建模
  • 批准号:
    356042-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
  • 批准号:
    2750689
  • 财政年份:
    2025
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Studentship
Developing behavioural methods to assess pain in horses
开发评估马疼痛的行为方法
  • 批准号:
    2686844
  • 财政年份:
    2025
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Studentship
Population genomic methods for modelling bacterial pathogen evolution
用于模拟细菌病原体进化的群体基因组方法
  • 批准号:
    DE240100316
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Early Career Researcher Award
Development and Translation Mass Spectrometry Methods to Determine BioMarkers for Parkinson's Disease and Comorbidities
确定帕金森病和合并症生物标志物的质谱方法的开发和转化
  • 批准号:
    2907463
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Studentship
Non invasive methods to accelerate the development of injectable therapeutic depots
非侵入性方法加速注射治疗储库的开发
  • 批准号:
    EP/Z532976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Research Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
  • 批准号:
    EP/Y002113/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Research Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Continuing Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
  • 批准号:
    2333724
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
CAREER: New methods in curve counting
职业:曲线计数的新方法
  • 批准号:
    2422291
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了