Longitudinal data subject to irregular observation: developing methods for variable selection, causal inference, and measurement error

不规则观察的纵向数据:开发变量选择、因果推断和测量误差的方法

基本信息

  • 批准号:
    RGPIN-2021-02733
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

We live in a data-rich society, and many datasets include information on the same individuals repeatedly over time (known as longitudinal data). However, often the times at which data is collected are related to the outcome of interest. For example, in a study of newborn growth, newborns who grow slowly are likely to have their weight measured more often. Taking the average of all the weight measurements over time will underestimate the growth rate. The measurement times are informative: the frequency of measurements gives us important information about the value of the measurements. We must take the measurement frequency into account to get an accurate picture of the trajectory over time. Methods for analysing this type of data are limited in what they can do. This work will focus on: (a) handling datasets for which a large number things are measured at each time point; (b) enabling researchers to detect whether one variable causes a change in another; (c) correctly accounting for measurement error; (d) describing the behaviour of a system according to whether it is in a high or low risk state. (a)Many datasets contain a large amount of information. For example, data on water quality might include the levels of thousands of contaminants; we need to filter out which contaminants are important. We will develop ways of doing this for longitudinal data with informative measurement times. (b)It is often straightforward to show whether one quantity tends to increase as another increases (association), but harder to show whether a change in one quantity causes a change in another (causality). Our ability to determine causality with longitudinal data with informative measurement times is limited. We will develop approaches to address this gap. (c)Data is typically measured subject to error. For example, height is never measured perfectly. This can lead to bias unless it is accounted for. We will find ways of doing this with longitudinal data with informative measurement times. (d)It is often helpful to describe expected outcomes conditional on risk status. For example, for a patient with a chronic disease subject to relapse and remission, it may be more helpful to describe health during periods of relapse, health during periods of remission, and the proportion of time spent in remission. We will develop ways of doing this using longitudinal data with informative observation times. In Canada we collect a large amount of data as part of usual societal operations. For example, many patients provide consent for their medical records to be used for research. This data can address questions that are specific to Canada, for example, to determine which groups of people are at risk of poorer health outcomes. This requires careful handling of informative observation in order to provide reliable results. The methods we develop will equip researchers to do this, and so generate high quality evidence on which to base societal decisions.
我们生活在一个数据丰富的社会中,许多数据集都包含同一个人的信息(称为纵向数据)。然而,收集数据的时间往往与感兴趣的结果有关。例如,在一项关于新生儿生长的研究中,生长缓慢的新生儿可能会更频繁地测量体重。取所有体重测量值的平均值会低估增长率。测量时间是信息性的:测量频率为我们提供了有关测量值的重要信息。我们必须考虑测量频率,以获得随时间变化的轨迹的准确图像。分析这类数据的方法所能做的是有限的。这项工作将侧重于:(a)处理在每个时间点测量大量事物的数据集;(B)使研究人员能够检测一个变量是否引起另一个变量的变化;(c)正确解释测量误差;(d)根据系统处于高风险状态还是低风险状态来描述系统的行为。(a)许多数据集包含大量信息。例如,关于水质的数据可能包括数千种污染物的水平;我们需要过滤出哪些污染物是重要的。我们将为具有信息测量时间的纵向数据开发这样做的方法。(b)It通常可以简单地表明一个量是否倾向于随着另一个量的增加而增加(关联),但更难表明一个量的变化是否会导致另一个量的变化(因果关系)。我们的能力,以确定因果关系的纵向数据与信息测量时间是有限的。我们将制定办法来弥补这一差距。(c)数据的测量通常会出现误差。例如,高度从来没有被完美地测量过。这可能会导致偏见,除非它被解释。我们将找到方法,这样做的纵向数据与翔实的测量时间。(d)It通常有助于描述以风险状态为条件的预期结果。例如,对于患有慢性疾病的患者,如果复发和缓解,描述复发期间的健康状况,缓解期间的健康状况以及缓解时间的比例可能会更有帮助。我们将开发这样做的方法,使用纵向数据与翔实的观察时间。在加拿大,我们收集大量数据作为日常社会运作的一部分。例如,许多患者同意将其医疗记录用于研究。这些数据可以解决加拿大特有的问题,例如,确定哪些人群面临健康状况较差的风险。这需要仔细处理信息丰富的观察,以提供可靠的结果。我们开发的方法将使研究人员能够做到这一点,从而产生高质量的证据,作为社会决策的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pullenayegum, Eleanor其他文献

Shared Electronic Vascular Risk Decision Support in Primary Care Computerization of Medical Practices for the Enhancement of Therapeutic Effectiveness (COMPETE III) Randomized Trial
  • DOI:
    10.1001/archinternmed.2011.471
  • 发表时间:
    2011-10-24
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Holbrook, Anne;Pullenayegum, Eleanor;Curnew, Greg
  • 通讯作者:
    Curnew, Greg
EQ-5D-derived health utilities and minimally important differences for chronic health conditions: 2011 Commonwealth Fund Survey of Sicker Adults in Canada
  • DOI:
    10.1007/s11136-016-1336-0
  • 发表时间:
    2016-12-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Tsiplova, Kate;Pullenayegum, Eleanor;Xie, Feng
  • 通讯作者:
    Xie, Feng
From Childhood to Adulthood: The Trajectory of Damage in Patients With Juvenile-Onset Systemic Lupus Erythematosus
  • DOI:
    10.1002/acr.23199
  • 发表时间:
    2017-11-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Lim, Lily S. H.;Pullenayegum, Eleanor;Silverman, Earl
  • 通讯作者:
    Silverman, Earl
Transforming Latent Utilities to Health Utilities: East Does Not Meet West
  • DOI:
    10.1002/hec.3444
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Xie, Feng;Pullenayegum, Eleanor;Igarashi, Ataru
  • 通讯作者:
    Igarashi, Ataru
A randomized, blinded, placebo-controlled trial comparing antibody responses to homeopathic and conventional vaccines in university students
  • DOI:
    10.1016/j.vaccine.2018.08.082
  • 发表时间:
    2018-11-19
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Loeb, Mark;Russell, Margaret L.;Pullenayegum, Eleanor
  • 通讯作者:
    Pullenayegum, Eleanor

Pullenayegum, Eleanor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pullenayegum, Eleanor', 18)}}的其他基金

Longitudinal data subject to irregular observation: developing methods for variable selection, causal inference, and measurement error
不规则观察的纵向数据:开发变量选择、因果推断和测量误差的方法
  • 批准号:
    RGPIN-2021-02733
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for Irregularly Measured Longitudinal Data
不规则测量纵向数据的统计方法
  • 批准号:
    RGPIN-2014-03989
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for Irregularly Measured Longitudinal Data
不规则测量纵向数据的统计方法
  • 批准号:
    RGPIN-2014-03989
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for Irregularly Measured Longitudinal Data
不规则测量纵向数据的统计方法
  • 批准号:
    RGPIN-2014-03989
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for Irregularly Measured Longitudinal Data
不规则测量纵向数据的统计方法
  • 批准号:
    RGPIN-2014-03989
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for Irregularly Measured Longitudinal Data
不规则测量纵向数据的统计方法
  • 批准号:
    RGPIN-2014-03989
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-parametric modelling of longitudinal data when the observation process is neither completely random nor completely deterministic
当观测过程既不完全随机也不完全确定时,纵向数据的半参数建模
  • 批准号:
    356042-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-parametric modelling of longitudinal data when the observation process is neither completely random nor completely deterministic
当观测过程既不完全随机也不完全确定时,纵向数据的半参数建模
  • 批准号:
    356042-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-parametric modelling of longitudinal data when the observation process is neither completely random nor completely deterministic
当观测过程既不完全随机也不完全确定时,纵向数据的半参数建模
  • 批准号:
    356042-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-parametric modelling of longitudinal data when the observation process is neither completely random nor completely deterministic
当观测过程既不完全随机也不完全确定时,纵向数据的半参数建模
  • 批准号:
    356042-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于高频信息下高维波动率矩阵估计及应用
  • 批准号:
    71901118
  • 批准年份:
    2019
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
半参数空间自回归面板模型的有效估计与应用研究
  • 批准号:
    71961011
  • 批准年份:
    2019
  • 资助金额:
    16.0 万元
  • 项目类别:
    地区科学基金项目
高频数据波动率统计推断、预测与应用
  • 批准号:
    71971118
  • 批准年份:
    2019
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
  • 批准号:
    61502059
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
体数据表达与绘制的新方法研究
  • 批准号:
    61170206
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
一类新Regime-Switching模型及其在金融建模中的应用研究
  • 批准号:
    11061041
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Data Archiving A Longitudinal Cohort: Toledo Adolescent Relationships Study
数据归档纵向队列:托莱多青少年关系研究
  • 批准号:
    10511494
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
Data Archiving A Longitudinal Cohort: Toledo Adolescent Relationships Study
数据归档纵向队列:托莱多青少年关系研究
  • 批准号:
    10693319
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
Novel frameworks for explaining unequal access to the health benefits of social ties: a longitudinal analysis in wild chimpanzees
解释社会关系带来的健康益处不平等的新框架:对野生黑猩猩的纵向分析
  • 批准号:
    10512365
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
Longitudinal data subject to irregular observation: developing methods for variable selection, causal inference, and measurement error
不规则观察的纵向数据:开发变量选择、因果推断和测量误差的方法
  • 批准号:
    RGPIN-2021-02733
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Longitudinal predictive modeling for tau in Alzheimer's disease
阿尔茨海默病中 tau 蛋白的纵向预测模型
  • 批准号:
    10308208
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Longitudinal predictive modeling for tau in Alzheimer's disease
阿尔茨海默病中 tau 蛋白的纵向预测模型
  • 批准号:
    10471298
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Longitudinal predictive modeling for tau in Alzheimer's disease
阿尔茨海默病中 tau 蛋白的纵向预测模型
  • 批准号:
    10632023
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Longitudinal Analyses of Antibody Responses to SARS-CoV-2
SARS-CoV-2 抗体反应的纵向分析
  • 批准号:
    10222403
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
Clinical markers of neonatal opioid withdrawal syndrome: onset, severity and longitudinal neurodevelopmental outcome
新生儿阿片戒断综合征的临床标志物:发病、严重程度和纵向神经发育结果
  • 批准号:
    10358574
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
The optimal loop diuretic: mechanistic insights from longitudinal changes in blood and urine proteins to explain efficacy and safety of torsemide vs furosemide after a heart failure hospitalization
最佳袢利尿剂:从血液和尿蛋白的纵向变化中获得机制见解,以解释心力衰竭住院后托拉塞米与呋塞米的疗效和安全性
  • 批准号:
    10074852
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了