Longitudinal data subject to irregular observation: developing methods for variable selection, causal inference, and measurement error

不规则观察的纵向数据:开发变量选择、因果推断和测量误差的方法

基本信息

  • 批准号:
    RGPIN-2021-02733
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

We live in a data-rich society, and many datasets include information on the same individuals repeatedly over time (known as longitudinal data). However, often the times at which data is collected are related to the outcome of interest. For example, in a study of newborn growth, newborns who grow slowly are likely to have their weight measured more often. Taking the average of all the weight measurements over time will underestimate the growth rate. The measurement times are informative: the frequency of measurements gives us important information about the value of the measurements. We must take the measurement frequency into account to get an accurate picture of the trajectory over time. Methods for analysing this type of data are limited in what they can do. This work will focus on: (a) handling datasets for which a large number things are measured at each time point; (b) enabling researchers to detect whether one variable causes a change in another; (c) correctly accounting for measurement error; (d) describing the behaviour of a system according to whether it is in a high or low risk state. (a)Many datasets contain a large amount of information. For example, data on water quality might include the levels of thousands of contaminants; we need to filter out which contaminants are important. We will develop ways of doing this for longitudinal data with informative measurement times. (b)It is often straightforward to show whether one quantity tends to increase as another increases (association), but harder to show whether a change in one quantity causes a change in another (causality). Our ability to determine causality with longitudinal data with informative measurement times is limited. We will develop approaches to address this gap. (c)Data is typically measured subject to error. For example, height is never measured perfectly. This can lead to bias unless it is accounted for. We will find ways of doing this with longitudinal data with informative measurement times. (d)It is often helpful to describe expected outcomes conditional on risk status. For example, for a patient with a chronic disease subject to relapse and remission, it may be more helpful to describe health during periods of relapse, health during periods of remission, and the proportion of time spent in remission. We will develop ways of doing this using longitudinal data with informative observation times. In Canada we collect a large amount of data as part of usual societal operations. For example, many patients provide consent for their medical records to be used for research. This data can address questions that are specific to Canada, for example, to determine which groups of people are at risk of poorer health outcomes. This requires careful handling of informative observation in order to provide reliable results. The methods we develop will equip researchers to do this, and so generate high quality evidence on which to base societal decisions.
我们生活在数据丰富的社会中,许多数据集随着时间的推移反复(称为纵向数据),包括有关同一个人的信息。但是,收集数据的时间通常与感兴趣的结果有关。例如,在对新生儿生长的研究中,慢慢生长的新生儿可能会更频繁地测量自己的体重。随着时间的推移,将所有重量测量的平均值取得长足,将低估增长率。测量时间是有益的:测量频率为我们提供了有关测量值的重要信息。我们必须考虑测量频率,以准确地了解轨迹的时间。分析此类数据的方法在他们可以做的事情上受到限制。这项工作将重点关注:(a)处理在每个时间点都测量大量内容的数据集; (b)使研究人员能够检测一个变量是否导致另一个变量的变化; (c)正确考虑测量误差; (d)根据系统的行为是高风险状态还是低风险状态。 (a)许多数据集包含大量信息。例如,关于水质的数据可能包括数千种污染物的水平;我们需要过滤出哪些污染物很重要。我们将开发出有信息测量时间的纵向数据的方法。 (b)通常很容易表明一个数量是否会随着另一个数量的增加(关联)而增加,但是很难表明一种数量的变化是否会导致另一种变化(因果关系)。我们使用纵向数据确定因果关系的能力,并有限的测量时间有限。我们将开发解决这一差距的方法。 (c)通常对数据进行测量。例如,从永远无法完美地测量高度。除非考虑到,否则这可能会导致偏见。我们将找到使用纵向数据的方法,并具有信息的测量时间。 (d)描述有条件的风险状况,通常会有所帮助。例如,对于患有复发和缓解的慢性疾病的患者,描述在复发期,缓解期间的健康以及缓解时间所花费的时间比例可能会更有帮助。我们将使用纵向数据和内容丰富的观察时间来开发这样做的方法。在加拿大,我们收集了大量数据,作为通常的社会运营的一部分。例如,许多患者同意其病历用于研究。这些数据可以解决特定于加拿大的问题,例如,确定哪些人群有较差的健康状况。这需要仔细处理信息性观察,以提供可靠的结果。我们开发的方法将使研究人员能够做到这一点,从而为基于社会决策做出基础的高质量证据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pullenayegum, Eleanor其他文献

EQ-5D-derived health utilities and minimally important differences for chronic health conditions: 2011 Commonwealth Fund Survey of Sicker Adults in Canada
  • DOI:
    10.1007/s11136-016-1336-0
  • 发表时间:
    2016-12-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Tsiplova, Kate;Pullenayegum, Eleanor;Xie, Feng
  • 通讯作者:
    Xie, Feng
Propensity Score Methods in Rare Disease: A Demonstration Using Observational Data in Systemic Lupus Erythematosus
  • DOI:
    10.3899/jrheum.200254
  • 发表时间:
    2021-03-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Almaghlouth, Ibrahim;Pullenayegum, Eleanor;Johnson, Sindhu R.
  • 通讯作者:
    Johnson, Sindhu R.
Shared Electronic Vascular Risk Decision Support in Primary Care Computerization of Medical Practices for the Enhancement of Therapeutic Effectiveness (COMPETE III) Randomized Trial
  • DOI:
    10.1001/archinternmed.2011.471
  • 发表时间:
    2011-10-24
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Holbrook, Anne;Pullenayegum, Eleanor;Curnew, Greg
  • 通讯作者:
    Curnew, Greg
From Childhood to Adulthood: The Trajectory of Damage in Patients With Juvenile-Onset Systemic Lupus Erythematosus
  • DOI:
    10.1002/acr.23199
  • 发表时间:
    2017-11-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Lim, Lily S. H.;Pullenayegum, Eleanor;Silverman, Earl
  • 通讯作者:
    Silverman, Earl
Transforming Latent Utilities to Health Utilities: East Does Not Meet West
  • DOI:
    10.1002/hec.3444
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Xie, Feng;Pullenayegum, Eleanor;Igarashi, Ataru
  • 通讯作者:
    Igarashi, Ataru

Pullenayegum, Eleanor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pullenayegum, Eleanor', 18)}}的其他基金

Longitudinal data subject to irregular observation: developing methods for variable selection, causal inference, and measurement error
不规则观察的纵向数据:开发变量选择、因果推断和测量误差的方法
  • 批准号:
    RGPIN-2021-02733
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for Irregularly Measured Longitudinal Data
不规则测量纵向数据的统计方法
  • 批准号:
    RGPIN-2014-03989
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for Irregularly Measured Longitudinal Data
不规则测量纵向数据的统计方法
  • 批准号:
    RGPIN-2014-03989
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for Irregularly Measured Longitudinal Data
不规则测量纵向数据的统计方法
  • 批准号:
    RGPIN-2014-03989
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for Irregularly Measured Longitudinal Data
不规则测量纵向数据的统计方法
  • 批准号:
    RGPIN-2014-03989
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for Irregularly Measured Longitudinal Data
不规则测量纵向数据的统计方法
  • 批准号:
    RGPIN-2014-03989
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-parametric modelling of longitudinal data when the observation process is neither completely random nor completely deterministic
当观测过程既不完全随机也不完全确定时,纵向数据的半参数建模
  • 批准号:
    356042-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-parametric modelling of longitudinal data when the observation process is neither completely random nor completely deterministic
当观测过程既不完全随机也不完全确定时,纵向数据的半参数建模
  • 批准号:
    356042-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-parametric modelling of longitudinal data when the observation process is neither completely random nor completely deterministic
当观测过程既不完全随机也不完全确定时,纵向数据的半参数建模
  • 批准号:
    356042-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-parametric modelling of longitudinal data when the observation process is neither completely random nor completely deterministic
当观测过程既不完全随机也不完全确定时,纵向数据的半参数建模
  • 批准号:
    356042-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

面向活动类型挖掘和主题提取的人类行为模式研究
  • 批准号:
    41801378
  • 批准年份:
    2018
  • 资助金额:
    25.2 万元
  • 项目类别:
    青年科学基金项目
城市功能区域及其演化的网络计算模型研究
  • 批准号:
    61701031
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
面向互联网大数据的用户兴趣挖掘及预测研究
  • 批准号:
    61772445
  • 批准年份:
    2017
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目
异质文本主题挖掘研究及应用于癌症子类型的发现
  • 批准号:
    61703362
  • 批准年份:
    2017
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于知识图谱的社交媒体大数据主题发现与趋势预测关键问题研究
  • 批准号:
    61772366
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目

相似海外基金

Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
  • 批准号:
    10643456
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Core C. Clinical Core/Human subjects
核心 C. 临床核心/人类受试者
  • 批准号:
    10625576
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
RNA biomarkers for alcohol use disorder
酒精使用障碍的 RNA 生物标志物
  • 批准号:
    10808532
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Identifying barriers and facilitators of harm reduction among adult dual users of e-cigarettes and cigarettes
确定电子烟和香烟成人双重使用者减少伤害的障碍和促进因素
  • 批准号:
    10590814
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了