Geometric methods for fluid-structure interactions
流固耦合的几何方法
基本信息
- 批准号:RGPIN-2018-05751
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
When a grass or tree leaf bends in the wind, the motion deforms the internal structure of narrow channels and moves the fluid inside. A geologist looking for oil probes the Earth with sounds waves, which move the porous media and fluid inside it in a complex manner. Blood pulsing through our arteries and veins deforms the elastic walls with every heartbeat. Interactions of fluids and structures are everywhere, and many more examples from everyday life can be easily found. Describing interaction of fluids and structures is always challenging. This project will create a unified framework for considering interactions between fluids and structures, using the approach of geometric mechanics. ******The focus of the project will be on the cases when fluids are flowing inside the elastic materials, such as narrow tubes and porous material media. The unifying theme of the project is the use of general geometric ideas, such as the symmetry of space, and methods of analytical mechanics (variational procedure), yielding the derivation and analysis of equations from the first principles. The methods of geometric mechanics allow to treat a wide variety of problems. The first set of problems concerns the mechanics of tubes conveying fluid, a problem which is relevant for engineering (e.g. chemical), and biomedical applications (blood flow). The methods developed in this project will also lead to the development of variational computational methods which guarantee conservation of linear and angular momenta and absence of artificial sources and sinks of mass, forces and torques due to discretization. The second set of problems concerns the dynamics of flexible porous media, such as sponge filled with water, and sheets and rods made of such media. The theory developed in this project will allow to analyze the motion of fluid-filled sheets and rods, and in particular, compute internal dissipation under the motion, which is difficult to compute without geometric methods. Finally, we apply Hamel's theory of mechanics to our problems. This method, based on choosing the most convenient velocities for the problem at hand, will further simplify the analysis and allow to find the most convenient velocity coordinates for the complex problems considered here. ***We are also incorporating geometric elasticity models for describing the growth of glioma in the brain, with the focus on its mechanical effects, given that the volume of the brain is constrained and the composition the brain matter around glioma changes. Understanding the effects of mechanics and additional stresses on glioma growth may eventually contribute to treatment recommendations. In addition, since the methods we develop here are general, and are based on fundamental principles of symmetry, they can be applied to a wide variety of practical problems coming from different physics, forming the background for studies beyond the scope of the 5-year project described here.
当草或树叶在风中弯曲时,这种运动会使狭窄通道的内部结构变形,并使内部的流体移动。一位寻找石油的地质学家用声波探测地球,声波以复杂的方式移动多孔介质和流体。每一次心跳,流经我们动脉和静脉的血液都会使弹性血管壁变形。流体与结构的相互作用无处不在,在日常生活中可以找到更多的例子,描述流体与结构的相互作用总是具有挑战性的。该项目将创建一个统一的框架,考虑流体和结构之间的相互作用,使用几何力学的方法。** 该项目的重点将是流体在弹性材料内流动的情况,如细管和多孔材料介质。该项目的统一主题是使用一般几何思想,如空间的对称性和分析力学(变分法)的方法,从第一原理推导和分析方程。几何力学的方法允许处理各种各样的问题。第一组问题涉及输送流体的管的力学,这是一个与工程(例如化学)和生物医学应用(血液流动)相关的问题。在这个项目中开发的方法也将导致发展的变分计算方法,保证守恒的线性和角动量和人工源和质量,力和扭矩的离散化,由于汇的情况下。 第二组问题涉及柔性多孔介质的动力学,例如充满水的海绵,以及由这种介质制成的片和棒。在这个项目中开发的理论将允许分析充满流体的板和杆的运动,特别是,计算运动下的内部耗散,这是很难计算没有几何方法。最后,我们应用哈默尔的力学理论来解决我们的问题。这种方法基于为手头的问题选择最方便的速度,将进一步简化分析,并允许为这里考虑的复杂问题找到最方便的速度坐标。* 我们还将几何弹性模型用于描述脑胶质瘤的生长,重点是其机械效应,因为脑体积受到限制,脑胶质瘤周围的脑物质成分发生变化。了解力学和额外应力对胶质瘤生长的影响可能最终有助于治疗建议。 此外,由于我们在这里开发的方法是通用的,并且基于对称性的基本原理,它们可以应用于来自不同物理学的各种实际问题,形成了超出这里描述的5年项目范围的研究背景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Putkaradze, Vakhtang其他文献
Geometric gradient-flow dynamics with singular solutions
- DOI:
10.1016/j.physd.2008.04.010 - 发表时间:
2008-11-15 - 期刊:
- 影响因子:4
- 作者:
Holm, Darryl D.;Putkaradze, Vakhtang;Tronci, Cesare - 通讯作者:
Tronci, Cesare
On Flexible Tubes Conveying Fluid: Geometric Nonlinear Theory, Stability and Dynamics
- DOI:
10.1007/s00332-015-9246-9 - 发表时间:
2015-08-01 - 期刊:
- 影响因子:3
- 作者:
Gay-Balmaz, Francois;Putkaradze, Vakhtang - 通讯作者:
Putkaradze, Vakhtang
Stability of helical tubes conveying fluid
- DOI:
10.1016/j.jfluidstructs.2017.12.020 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:3.6
- 作者:
Gay-Balmaz, Francois;Georgievskii, Dimitri;Putkaradze, Vakhtang - 通讯作者:
Putkaradze, Vakhtang
Manipulation of Single Atoms by Atomic Force Microscopy as a Resonance Effect
- DOI:
10.1103/physrevlett.102.215502 - 发表时间:
2009-05-29 - 期刊:
- 影响因子:8.6
- 作者:
Kim, Byungsoo;Putkaradze, Vakhtang;Hikihara, Takashi - 通讯作者:
Hikihara, Takashi
Relaxation dynamics of nucleosomal DNA
- DOI:
10.1039/b910937b - 发表时间:
2009-01-01 - 期刊:
- 影响因子:3.3
- 作者:
Ponomarev, Sergei Y.;Putkaradze, Vakhtang;Bishop, Thomas C. - 通讯作者:
Bishop, Thomas C.
Putkaradze, Vakhtang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Putkaradze, Vakhtang', 18)}}的其他基金
Geometric methods for fluid-structure interactions
流固耦合的几何方法
- 批准号:
RGPIN-2018-05751 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Sciences and Alternative Energy Applications
数学科学和替代能源应用
- 批准号:
533305-2018 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Connect Grants Level 2
Constrained geometric mechanics: theory and applications
约束几何力学:理论与应用
- 批准号:
435827-2013 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Constrained geometric mechanics: theory and applications
约束几何力学:理论与应用
- 批准号:
435827-2013 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Enhanced energy production from solar towers to support communities by means of grow houses
提高太阳能塔的能源产量,通过种植房屋来支持社区
- 批准号:
492619-2015 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Engage Grants Program
Constrained geometric mechanics: theory and applications
约束几何力学:理论与应用
- 批准号:
435827-2013 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Constrained geometric mechanics: theory and applications
约束几何力学:理论与应用
- 批准号:
435827-2013 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Interaction with Lotek Inc on energy harvesting devices for wildlife animal tracking
与 Lotek Inc 就用于野生动物追踪的能量收集设备进行互动
- 批准号:
466099-2014 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Interaction Grants Program
Constrained geometric mechanics: theory and applications
约束几何力学:理论与应用
- 批准号:
435827-2013 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
- 批准号:
2309728 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Investigating Enlarged Perivascular Spaces as a Neuroimaging Biomarker of Cerebral Small Vessel Disease
研究扩大的血管周围空间作为脑小血管疾病的神经影像生物标志物
- 批准号:
10674098 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Regulation of microglial function by blood-borne factors
血源性因子对小胶质细胞功能的调节
- 批准号:
10679408 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Elucidating single cell changes in neurogenic brain regions during HIV and cannabinoid exposure
阐明艾滋病毒和大麻素暴露期间神经源性大脑区域的单细胞变化
- 批准号:
10686685 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Achieving Sustained Control of Inflammation to Prevent Post-Traumatic Osteoarthritis (PTOA)
实现炎症的持续控制以预防创伤后骨关节炎 (PTOA)
- 批准号:
10641225 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Non-invasive vagus nerve stimulation to mitigate subarachnoid hemorrhage induced inflammation
无创迷走神经刺激减轻蛛网膜下腔出血引起的炎症
- 批准号:
10665166 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Mechanistic characterization of vaginal microbiome-metabolome associations and metabolite-mediated host inflammation
阴道微生物组-代谢组关联和代谢物介导的宿主炎症的机制特征
- 批准号:
10663410 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
The impact of age-related vitreous degeneration and vitreous replacement on scleral biomechanics: a novel mechanism and treatment target for glaucoma
年龄相关性玻璃体变性和玻璃体置换对巩膜生物力学的影响:青光眼的新机制和治疗目标
- 批准号:
10647522 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Neurovascular calcification, Alzheimer’s disease and related dementias in two Native South American populations
两个南美原住民人群的神经血管钙化、阿尔茨海默病和相关痴呆症
- 批准号:
10662151 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Integrating circulating tumor DNA assay and protein-based MRI to accurately monitor glioma therapy
整合循环肿瘤 DNA 检测和基于蛋白质的 MRI 来准确监测神经胶质瘤治疗
- 批准号:
10735404 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别: