Constrained geometric mechanics: theory and applications

约束几何力学:理论与应用

基本信息

  • 批准号:
    435827-2013
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

This proposal focuses on the applications of geometric methods to constrained dynamics of elastic structures. In the first part, we shall apply the methods of geometric mechanics, and corresponding constraints, to systems involving point wise, non-holonomic constraints, with a particular example of elastic rods in contact. This problem will be tackled using the recently developed methods of geometric Lagrange-d'Alambert's methods. The proposal will explore interesting and new directions provided by this theory, such as highly complex dynamics of rods caused by the contact, generalizations to discrete rods, symmetry reductions, steady and unsteady exact solutions, and others. In the second part, we will explore tree-like structures with linked branches, or, alternatively, an array of linked tree-like branches, evaluated from the point of view of geometry. These problems will be treated with methods geometric mechanics of iterative semidirect product groups with holonomic constraints. We shall study the effect of constraints on the geometric structures recently derived by the PI for such objects, such as conservation laws and Poisson brackets. The problem of tree-like structure dynamics will also be used in the development of a nanomechanical sensor and a macroscale tree-like energy harvesting device. Mathematical questions outlined above play a crucial role in the design of both devices. The sensor will be developed together with the PI's collaborators at CSU and will utilize a direct visualization of nanoscale motion using EUV pulsed laser. The tree-like energy harvester is being developed with the PI's collaborators in Japan (U of Kyoto and Shiga Prefecture). The PI's expertise in the dynamics and modeling, nano-fabrication facilities at NINT on campus, and collaboration with the EUV laser group at CSU and Japan makes this project likely to succeed. The project will focus heavily on the training of graduate students and postdocs in the development of tools of modern mathematics and subsequent application of these tools to modern, practical problems. While the project is closely involved with experiments, support is sought only for the theory part.
本文着重讨论几何方法在弹性结构约束动力学中的应用。在第一部分中,我们将把几何力学的方法和相应的约束应用于涉及点式非完整约束的系统,并以弹性杆接触为例。这个问题将使用最近开发的几何拉格朗日-达朗贝尔的方法来解决。该提案将探索有趣的和新的方向提供了这个理论,如高度复杂的动力学杆所造成的接触,概括离散杆,对称性减少,稳定和非稳定的精确解,和其他。在第二部分中,我们将探索具有链接分支的树状结构,或者从几何学的角度评估链接树状分支的阵列。这些问题将用完整约束的迭代半直积群的几何力学方法来处理。我们将研究最近由PI为这些对象导出的几何结构上的约束的效果,例如守恒律和泊松括号。树状结构动力学的问题也将用于纳米机械传感器和宏观树状能量收集装置的开发。上述数学问题在这两种设备的设计中起着至关重要的作用。该传感器将与CSU的PI合作者一起开发,并将利用EUV脉冲激光直接可视化纳米级运动。这种树形能量采集器正在与PI在日本的合作者(京都大学和滋贺)一起开发。PI在动力学和建模方面的专业知识,NINT校园内的纳米制造设施,以及与CSU和日本的EUV激光组的合作,使该项目有可能成功。该项目将主要侧重于培养研究生和博士后,开发现代数学工具,并随后将这些工具应用于现代实际问题。虽然该项目与实验密切相关,但仅寻求理论部分的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Putkaradze, Vakhtang其他文献

Geometric gradient-flow dynamics with singular solutions
  • DOI:
    10.1016/j.physd.2008.04.010
  • 发表时间:
    2008-11-15
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Holm, Darryl D.;Putkaradze, Vakhtang;Tronci, Cesare
  • 通讯作者:
    Tronci, Cesare
On Flexible Tubes Conveying Fluid: Geometric Nonlinear Theory, Stability and Dynamics
  • DOI:
    10.1007/s00332-015-9246-9
  • 发表时间:
    2015-08-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Gay-Balmaz, Francois;Putkaradze, Vakhtang
  • 通讯作者:
    Putkaradze, Vakhtang
Stability of helical tubes conveying fluid
  • DOI:
    10.1016/j.jfluidstructs.2017.12.020
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Gay-Balmaz, Francois;Georgievskii, Dimitri;Putkaradze, Vakhtang
  • 通讯作者:
    Putkaradze, Vakhtang
Manipulation of Single Atoms by Atomic Force Microscopy as a Resonance Effect
  • DOI:
    10.1103/physrevlett.102.215502
  • 发表时间:
    2009-05-29
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Kim, Byungsoo;Putkaradze, Vakhtang;Hikihara, Takashi
  • 通讯作者:
    Hikihara, Takashi
Relaxation dynamics of nucleosomal DNA
  • DOI:
    10.1039/b910937b
  • 发表时间:
    2009-01-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Ponomarev, Sergei Y.;Putkaradze, Vakhtang;Bishop, Thomas C.
  • 通讯作者:
    Bishop, Thomas C.

Putkaradze, Vakhtang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Putkaradze, Vakhtang', 18)}}的其他基金

Geometric methods for fluid-structure interactions
流固耦合的几何方法
  • 批准号:
    RGPIN-2018-05751
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric methods for fluid-structure interactions
流固耦合的几何方法
  • 批准号:
    RGPIN-2018-05751
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Sciences and Alternative Energy Applications
数学科学和替代能源应用
  • 批准号:
    533305-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Connect Grants Level 2
Constrained geometric mechanics: theory and applications
约束几何力学:理论与应用
  • 批准号:
    435827-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Enhanced energy production from solar towers to support communities by means of grow houses
提高太阳能塔的能源产量,通过种植房屋来支持社区
  • 批准号:
    492619-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Engage Grants Program
Constrained geometric mechanics: theory and applications
约束几何力学:理论与应用
  • 批准号:
    435827-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Constrained geometric mechanics: theory and applications
约束几何力学:理论与应用
  • 批准号:
    435827-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Interaction with Lotek Inc on energy harvesting devices for wildlife animal tracking
与 Lotek Inc 就用于野生动物追踪的能量收集设备进行互动
  • 批准号:
    466099-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Interaction Grants Program
Constrained geometric mechanics: theory and applications
约束几何力学:理论与应用
  • 批准号:
    435827-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
对RS和AG码新型软判决代数译码的研究
  • 批准号:
    61671486
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Ginzburg-Landau 型发展方程的拓扑缺陷以及相关问题研究
  • 批准号:
    11071206
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
Bose-Einstein凝聚、超导G-L模型以及相关问题研究
  • 批准号:
    10771181
  • 批准年份:
    2007
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Geometric and topological mechanics of flexible structures
职业:柔性结构的几何和拓扑力学
  • 批准号:
    2338492
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
Renewed bone remodeling after pausing long-term bisphosphonate use: Does it replace regions of impaired bone quality and restore mechanical integrity?
暂停长期使用双膦酸盐后重新进行骨重塑:它是否可以替代骨质量受损的区域并恢复机械完整性?
  • 批准号:
    10656954
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
Geometric Probability in Statistical Mechanics and Game Theory
统计力学和博弈论中的几何概率
  • 批准号:
    2153359
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
Geometric and mechanical control of developmental Yap signaling
发育 Yap 信号的几何和机械控制
  • 批准号:
    10663798
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
Geometric and mechanical control of developmental Yap signaling
发育 Yap 信号的几何和机械控制
  • 批准号:
    10342966
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
Novel Cardiac MRI-Based Predictors for Tetralogy of Fallot: Deformation, Kinematic, and Geometric Analyses
基于心脏 MRI 的新型法洛四联症预测因子:变形、运动学和几何分析
  • 批准号:
    10352409
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
Advances in Geometric Mechanics and Topology of Quantum Systems
量子系统几何力学和拓扑的进展
  • 批准号:
    21K03223
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
HIV antibodies and NK cell ADCC: nanometer-scale tracking of immune synapse dynamics.
HIV 抗体和 NK 细胞 ADCC:免疫突触动力学的纳米级跟踪。
  • 批准号:
    10490878
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
Novel Cardiac MRI-Based Predictors for Tetralogy of Fallot: Deformation, Kinematic, and Geometric Analyses
基于心脏 MRI 的新型法洛四联症预测因子:变形、运动学和几何分析
  • 批准号:
    10689013
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
HIV antibodies and NK cell ADCC: nanometer-scale tracking of immune synapse dynamics.
HIV 抗体和 NK 细胞 ADCC:免疫突触动力学的纳米级跟踪。
  • 批准号:
    10686398
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了