Geometry and Dynamics in the Teichmüller space and the Outer space.

泰希米勒空间和外层空间的几何和动力学。

基本信息

  • 批准号:
    RGPIN-2018-06486
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

We propose to study various aspects of geometry and dynamics of Teichmüller space and the closely related Outer space. Below is the list of my active projects and the names of collaborators that are involved in each of these projects. ******1-- Geometry of Teichmüller space equipped with Thurston Metric (with David Dumas, Babak Modami, Anna Lenzhen, Jing Tao and Fanny Kassel) ***Thurston introduced a metric on Teichmüller space that uses the hyperbolic geometry, rather than conformal geometry, to define the distance between two points. This metric is more natural in many ways, in particular, in the way it interacts with the Thurston boundary of Teichmüller space. Recent studies have shown that it equips Teichmüller space with rich structure. However, its geometry remains larger unexamined. ******2-- Geometry of Teichmüller Space Equipped with Teichmüller Metric (with Maxime Fortier Bourque, Misha Kapovich and Robert Young) ***This is an old topic, however with many open problems. We examine convexity properties of Teichmüller space as well as the behavior of Dehn functions in Teichmüller space.******3- Translation Surfaces of Finite and Infinite Type (with Anja Randecker and Howard Masur) ***These problems are natural extensions of recent progress in the field of flat surfaces (including the work of Eskin-Mirzakhani). We examine which directions in a translation surface of infinite type define a uniquely ergodic foliation, the same question asked by Veech in the case of surfaces of finite type. ******4- Random Walks in Mapping class group (with Alex Eskin) ***Can the Lebesgue measure in the boundary of Teichmüller space be obtained as the stationary measure of a random walk in the mapping class group?******5- Geometry of Outer space and related complexes (with Mladen Bestvina and Yulan Qing) ***Outer space is a space constructed as a direct analogy with Teichmüller space. However, there are considerably fewer tools available. For example, is there an analogue of the distance formula for Out(F_n)? I the free factor complex uniformly hyperbolic? Is the free splitting complex uniformly hyperbolic? ******6-- Counting problems in Teichmüller space (with Juan Souto) ***This is following and extending the work of Mirzakhani. Considering points in Teichmüller space as geodesic currents provides a new point of view where, using analogies with the symmetric space, many difficult counting problems become approachable.******7- Big Mapping Class Group (with Juliette Juliette Bavard and Spencer Dowdall) ***This is a new field and even the most basic problems are open. We ask if these large mapping class group have the strong distortion property in the sense of Schreier. ******8- Shape of Moduli Space (with Maxime Fortier Bourque and Robert Young) ***The shape of moduli space remains mysterious. For example, what is the Cheeger constant of moduli space? Is it coarse, homogenous almost everywhere? Does it resemble an expander graph?**
我们建议研究泰希米勒空间和密切相关的外层空间的几何和动力学的各个方面。下面是我的活跃项目列表以及参与每个项目的合作者的姓名。**1-几何Teichmüller空间配备瑟斯顿度量(与大卫大仲马,巴巴克Modami,安娜Lenzhen,陶靖和范妮卡塞尔)* 瑟斯顿介绍了一个度量Teichmüller空间,使用双曲几何,而不是共形几何,以定义两点之间的距离。这个度规在许多方面都更自然,特别是它与泰希米勒空间的瑟斯顿边界相互作用的方式。最近的研究表明,它使Teichmüller空间具有丰富的结构。然而,它的几何形状仍然较大未经检查。**2--配备Teichmüller度量的Teichmüller空间的几何(与Maxime Fortier Bourque,Misha Kapovich和Robert Young)* 这是一个古老的话题,但有许多开放的问题。我们研究Teichmüller空间的凸性以及Dehn函数在Teichmüller空间中的行为。3-有限和无限型的平移曲面(与Anja Randecker和霍华德Masur)* 这些问题是平面领域最近进展的自然延伸(包括Eskin Mirzakhani的工作)。我们研究的方向在一个翻译表面的无限型定义一个独特的遍历叶理,同样的问题问维奇的情况下,表面的有限型。**4- Random Walks in Mapping class group(与Alex Eskin合著)* Teichmüller空间边界上的Lebesgue测度能否作为映射class group中随机游动的平稳测度得到?** 5-外层空间的几何学和相关的复合体(与Mladen Bestelf和Yulan Qing)*** 外层空间是一个与Teichmüller空间直接类比的空间。然而,可用的工具却少得多。例如,是否存在类似于Out(F_n)的距离公式?I自由因子复均匀双曲?自由分裂复形是一致双曲的吗?**6--Teichmüller空间中的计数问题(与Juan Souto)* 这是Mirzakhani工作的后续和扩展。将Teichmüller空间中的点视为测地线流提供了一个新的观点,其中使用与对称空间的类比,许多困难的计数问题变得可接近。7-大映射类组(与朱丽叶朱丽叶Bavard和斯宾塞Dowdall)* 这是一个新的领域,甚至最基本的问题是开放的。我们问这些大的映射类群是否具有Schreier意义下的强畸变性质。*8-模空间的形状(与Maxime Fortier Bourque和Robert Young)* 模空间的形状仍然是神秘的。例如,什么是模空间的Cheeger常数?是不是到处都是粗糙的、同质的?它是否类似于扩展图?**

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rafi, Kasra其他文献

Two Results on End Spaces of Infinite Type Surfaces
无限型曲面端空间的两个结果
  • DOI:
    10.1307/mmj/20226208
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Mann, Kathryn;Rafi, Kasra
  • 通讯作者:
    Rafi, Kasra
Limit sets of Weil–Petersson geodesics with nonminimal ending laminations
具有非最小最终叠层的 Weil-Petersson 测地线的极限集
  • DOI:
    10.1142/s1793525319500456
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Brock, Jeffrey;Leininger, Christopher;Modami, Babak;Rafi, Kasra
  • 通讯作者:
    Rafi, Kasra
On hyperbolicity of free splitting and free factor complexes
关于自由分裂和自由因子复合物的双曲性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kapovich, Ilya;Rafi, Kasra
  • 通讯作者:
    Rafi, Kasra
Isomorphisms Between Big Mapping Class Groups
大映射类组之间的同构
Limit sets of Teichmüller geodesics with minimal nonuniquely ergodic vertical foliation, II
具有最小非唯一遍历垂直叶理的 Teichmüller 测地线的极限集,II

Rafi, Kasra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rafi, Kasra', 18)}}的其他基金

Geometry and Dynamics in the Teichmüller space and the Outer space.
泰希米勒空间和外层空间的几何和动力学。
  • 批准号:
    RGPIN-2018-06486
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry and Dynamics in the Teichmüller space and the Outer space.
泰希米勒空间和外层空间的几何和动力学。
  • 批准号:
    RGPIN-2018-06486
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry and Dynamics in the Teichmüller space and the Outer space.
泰希米勒空间和外层空间的几何和动力学。
  • 批准号:
    RGPIN-2018-06486
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry and Dynamics in the Teichmüller space and the Outer space.
泰希米勒空间和外层空间的几何和动力学。
  • 批准号:
    RGPIN-2018-06486
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of Teichmüller space
Teichmüller 空间的几何
  • 批准号:
    435885-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of Teichmüller space
Teichmüller 空间的几何
  • 批准号:
    435885-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of Teichmüller space
Teichmüller 空间的几何
  • 批准号:
    435885-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of Teichmüller space
Teichmüller 空间的几何
  • 批准号:
    435885-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of Teichmüller space
Teichmüller 空间的几何
  • 批准号:
    435885-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政​​策的情绪动态
  • 批准号:
    10108433
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    EU-Funded
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
  • 批准号:
    10090067
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Collaborative R&D
Braiding Dynamics of Majorana Modes
马约拉纳模式的编织动力学
  • 批准号:
    DP240100168
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Projects
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
  • 批准号:
    DP240100465
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Projects
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
  • 批准号:
    DE240100755
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Early Career Researcher Award
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
  • 批准号:
    EP/Y03614X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Grant
Human enteric nervous system progenitor dynamics during development and disease
人类肠神经系统祖细胞在发育和疾病过程中的动态
  • 批准号:
    MR/Y013476/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Grant
Structure, Dynamics and Activity of Bacterial Secretosome
细菌分泌体的结构、动力学和活性
  • 批准号:
    BB/Y004531/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Grant
Shining light on single molecule dynamics: photon by photon
照亮单分子动力学:逐个光子
  • 批准号:
    EP/X031934/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Grant
New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
  • 批准号:
    EP/X040852/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了