Geometry and Dynamics in the Teichmüller space and the Outer space.

泰希米勒空间和外层空间的几何和动力学。

基本信息

  • 批准号:
    RGPIN-2018-06486
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

We propose to study various aspects of geometry and dynamics of Teichmüller space and the closely related Outer space. Below is the list of my active projects and the names of collaborators that are involved in each of these projects. 1-- Geometry of Teichmüller space equipped with Thurston Metric (with David Dumas, Babak Modami, Anna Lenzhen, Jing Tao and Fanny Kassel) Thurston introduced a metric on Teichmüller space that uses the hyperbolic geometry, rather than conformal geometry, to define the distance between two points. This metric is more natural in many ways, in particular, in the way it interacts with the Thurston boundary of Teichmüller space. Recent studies have shown that it equips Teichmüller space with rich structure. However, its geometry remains larger unexamined. 2-- Geometry of Teichmüller Space Equipped with Teichmüller Metric (with Maxime Fortier Bourque, Misha Kapovich and Robert Young) This is an old topic, however with many open problems. We examine convexity properties of Teichmüller space as well as the behavior of Dehn functions in Teichmüller space. 3- Translation Surfaces of Finite and Infinite Type (with Anja Randecker and Howard Masur) These problems are natural extensions of recent progress in the field of flat surfaces (including the work of Eskin-Mirzakhani). We examine which directions in a translation surface of infinite type define a uniquely ergodic foliation, the same question asked by Veech in the case of surfaces of finite type. 4- Random Walks in Mapping class group (with Alex Eskin) Can the Lebesgue measure in the boundary of Teichmüller space be obtained as the stationary measure of a random walk in the mapping class group? 5- Geometry of Outer space and related complexes (with Mladen Bestvina and Yulan Qing) Outer space is a space constructed as a direct analogy with Teichmüller space. However, there are considerably fewer tools available. For example, is there an analogue of the distance formula for Out(F_n)? I the free factor complex uniformly hyperbolic? Is the free splitting complex uniformly hyperbolic? 6-- Counting problems in Teichmüller space (with Juan Souto) This is following and extending the work of Mirzakhani. Considering points in Teichmüller space as geodesic currents provides a new point of view where, using analogies with the symmetric space, many difficult counting problems become approachable. 7- Big Mapping Class Group (with Juliette Juliette Bavard and Spencer Dowdall) This is a new field and even the most basic problems are open. We ask if these large mapping class group have the strong distortion property in the sense of Schreier. 8- Shape of Moduli Space (with Maxime Fortier Bourque and Robert Young) The shape of moduli space remains mysterious. For example, what is the Cheeger constant of moduli space? Is it coarse, homogenous almost everywhere? Does it resemble an expander graph?
我们建议研究的几何和动力学的各个方面的teichm<s:1>勒空间和密切相关的外层空间。下面是我正在进行的项目列表,以及参与这些项目的合作者的名字。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rafi, Kasra其他文献

Two Results on End Spaces of Infinite Type Surfaces
无限型曲面端空间的两个结果
  • DOI:
    10.1307/mmj/20226208
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Mann, Kathryn;Rafi, Kasra
  • 通讯作者:
    Rafi, Kasra
Limit sets of Weil–Petersson geodesics with nonminimal ending laminations
具有非最小最终叠层的 Weil-Petersson 测地线的极限集
  • DOI:
    10.1142/s1793525319500456
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Brock, Jeffrey;Leininger, Christopher;Modami, Babak;Rafi, Kasra
  • 通讯作者:
    Rafi, Kasra
On hyperbolicity of free splitting and free factor complexes
关于自由分裂和自由因子复合物的双曲性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kapovich, Ilya;Rafi, Kasra
  • 通讯作者:
    Rafi, Kasra
Isomorphisms Between Big Mapping Class Groups
大映射类组之间的同构
Limit sets of Teichmüller geodesics with minimal nonuniquely ergodic vertical foliation, II
具有最小非唯一遍历垂直叶理的 Teichmüller 测地线的极限集,II

Rafi, Kasra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rafi, Kasra', 18)}}的其他基金

Geometry and Dynamics in the Teichmüller space and the Outer space.
泰希米勒空间和外层空间的几何和动力学。
  • 批准号:
    RGPIN-2018-06486
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry and Dynamics in the Teichmüller space and the Outer space.
泰希米勒空间和外层空间的几何和动力学。
  • 批准号:
    RGPIN-2018-06486
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry and Dynamics in the Teichmüller space and the Outer space.
泰希米勒空间和外层空间的几何和动力学。
  • 批准号:
    RGPIN-2018-06486
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry and Dynamics in the Teichmüller space and the Outer space.
泰希米勒空间和外层空间的几何和动力学。
  • 批准号:
    RGPIN-2018-06486
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of Teichmüller space
Teichmüller 空间的几何
  • 批准号:
    435885-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of Teichmüller space
Teichmüller 空间的几何
  • 批准号:
    435885-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of Teichmüller space
Teichmüller 空间的几何
  • 批准号:
    435885-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of Teichmüller space
Teichmüller 空间的几何
  • 批准号:
    435885-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of Teichmüller space
Teichmüller 空间的几何
  • 批准号:
    435885-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政​​策的情绪动态
  • 批准号:
    10108433
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    EU-Funded
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
  • 批准号:
    10090067
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Collaborative R&D
Braiding Dynamics of Majorana Modes
马约拉纳模式的编织动力学
  • 批准号:
    DP240100168
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Projects
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
  • 批准号:
    DP240100465
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Projects
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
  • 批准号:
    DE240100755
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Early Career Researcher Award
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
  • 批准号:
    EP/Y03614X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Grant
Human enteric nervous system progenitor dynamics during development and disease
人类肠神经系统祖细胞在发育和疾病过程中的动态
  • 批准号:
    MR/Y013476/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Grant
Structure, Dynamics and Activity of Bacterial Secretosome
细菌分泌体的结构、动力学和活性
  • 批准号:
    BB/Y004531/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Grant
Shining light on single molecule dynamics: photon by photon
照亮单分子动力学:逐个光子
  • 批准号:
    EP/X031934/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Grant
New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
  • 批准号:
    EP/X040852/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了