Geometry and Dynamics in the Teichmüller space and the Outer space.

泰希米勒空间和外层空间的几何和动力学。

基本信息

  • 批准号:
    RGPIN-2018-06486
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

We propose to study various aspects of geometry and dynamics of Teichmüller space and the closely related Outer space. Below is the list of my active projects and the names of collaborators that are involved in each of these projects. 1-- Geometry of Teichmüller space equipped with Thurston Metric (with David Dumas, Babak Modami, Anna Lenzhen, Jing Tao and Fanny Kassel) Thurston introduced a metric on Teichmüller space that uses the hyperbolic geometry, rather than conformal geometry, to define the distance between two points. This metric is more natural in many ways, in particular, in the way it interacts with the Thurston boundary of Teichmüller space. Recent studies have shown that it equips Teichmüller space with rich structure. However, its geometry remains larger unexamined. 2-- Geometry of Teichmüller Space Equipped with Teichmüller Metric (with Maxime Fortier Bourque, Misha Kapovich and Robert Young) This is an old topic, however with many open problems. We examine convexity properties of Teichmüller space as well as the behavior of Dehn functions in Teichmüller space.3- Translation Surfaces of Finite and Infinite Type (with Anja Randecker and Howard Masur) These problems are natural extensions of recent progress in the field of flat surfaces (including the work of Eskin-Mirzakhani). We examine which directions in a translation surface of infinite type define a uniquely ergodic foliation, the same question asked by Veech in the case of surfaces of finite type. 4- Random Walks in Mapping class group (with Alex Eskin) Can the Lebesgue measure in the boundary of Teichmüller space be obtained as the stationary measure of a random walk in the mapping class group?5- Geometry of Outer space and related complexes (with Mladen Bestvina and Yulan Qing) Outer space is a space constructed as a direct analogy with Teichmüller space. However, there are considerably fewer tools available. For example, is there an analogue of the distance formula for Out(F_n)? I the free factor complex uniformly hyperbolic? Is the free splitting complex uniformly hyperbolic? 6-- Counting problems in Teichmüller space (with Juan Souto) This is following and extending the work of Mirzakhani. Considering points in Teichmüller space as geodesic currents provides a new point of view where, using analogies with the symmetric space, many difficult counting problems become approachable.7- Big Mapping Class Group (with Juliette Juliette Bavard and Spencer Dowdall) This is a new field and even the most basic problems are open. We ask if these large mapping class group have the strong distortion property in the sense of Schreier. 8- Shape of Moduli Space (with Maxime Fortier Bourque and Robert Young) The shape of moduli space remains mysterious. For example, what is the Cheeger constant of moduli space? Is it coarse, homogenous almost everywhere? Does it resemble an expander graph?
我们建议研究的几何和动力学的各个方面的teichm<s:1>勒空间和密切相关的外层空间。下面是我正在进行的项目列表,以及参与这些项目的合作者的名字。1-配备Thurston度量的teichm<e:1>空间的几何(与David Dumas, Babak Modami, Anna Lenzhen, Jing Tao和Fanny Kassel) Thurston在teichm<e:1>空间上引入了一个度量,该度量使用双曲几何而不是共形几何来定义两点之间的距离。这个度规在很多方面更自然,特别是它与teichm<s:1> ller空间的Thurston边界相互作用的方式。近年来的研究表明,它使teichm<e:1>空间具有丰富的结构。然而,它的几何形状仍有待进一步研究。2-配备teichm<e:1> ller度量的teichm<e:1> ller空间的几何(与Maxime Fortier Bourque, Misha Kapovich和Robert Young)这是一个古老的话题,但是有许多开放的问题。我们研究了teichm<e:1> ller空间的凸性以及Dehn函数在teichm<e:1> ller空间中的行为。有限型和无限型的平移曲面(与Anja Randecker和Howard Masur)这些问题是平面领域最新进展(包括Eskin-Mirzakhani的工作)的自然延伸。我们考察了无限型平移曲面上哪些方向定义了唯一遍历叶理,这与Veech在有限型曲面上提出的问题相同。4-映射类群中的随机漫步(with Alex Eskin)能否得到teichm<e:1>空间边界上的Lebesgue测度作为映射类群中随机漫步的平稳测度?5 .外空间几何及其相关复合体(与Mladen Bestvina和Yulan Qing合作)外空间是与teichm<s:1> ller空间直接类比而构建的空间。然而,可用的工具要少得多。例如,对于Out(F_n)是否有类似的距离公式?自由因子是均匀双曲的吗?自由分裂复合体是均匀双曲的吗?6- teichm<e:1>空间中的计数问题(与Juan Souto合作)这是对Mirzakhani工作的继承和扩展。将teichmller空间中的点视为测地线电流提供了一种新的观点,在这种观点中,使用与对称空间的类比,许多困难的计数问题变得可以接近。这是一个新的领域,甚至最基本的问题都是开放的。8-模空间的形状(与Maxime Fortier Bourque和Robert Young合著)模空间的形状仍然是一个谜。例如,模空间的Cheeger常数是多少?它是粗糙的,几乎到处都是同质的吗?它像一个展开图吗?

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rafi, Kasra其他文献

Two Results on End Spaces of Infinite Type Surfaces
无限型曲面端空间的两个结果
  • DOI:
    10.1307/mmj/20226208
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Mann, Kathryn;Rafi, Kasra
  • 通讯作者:
    Rafi, Kasra
Limit sets of Weil–Petersson geodesics with nonminimal ending laminations
具有非最小最终叠层的 Weil-Petersson 测地线的极限集
  • DOI:
    10.1142/s1793525319500456
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Brock, Jeffrey;Leininger, Christopher;Modami, Babak;Rafi, Kasra
  • 通讯作者:
    Rafi, Kasra
On hyperbolicity of free splitting and free factor complexes
关于自由分裂和自由因子复合物的双曲性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kapovich, Ilya;Rafi, Kasra
  • 通讯作者:
    Rafi, Kasra
Isomorphisms Between Big Mapping Class Groups
大映射类组之间的同构
Limit sets of Teichmüller geodesics with minimal nonuniquely ergodic vertical foliation, II
具有最小非唯一遍历垂直叶理的 Teichmüller 测地线的极限集,II

Rafi, Kasra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rafi, Kasra', 18)}}的其他基金

Geometry and Dynamics in the Teichmüller space and the Outer space.
泰希米勒空间和外层空间的几何和动力学。
  • 批准号:
    RGPIN-2018-06486
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry and Dynamics in the Teichmüller space and the Outer space.
泰希米勒空间和外层空间的几何和动力学。
  • 批准号:
    RGPIN-2018-06486
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry and Dynamics in the Teichmüller space and the Outer space.
泰希米勒空间和外层空间的几何和动力学。
  • 批准号:
    RGPIN-2018-06486
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry and Dynamics in the Teichmüller space and the Outer space.
泰希米勒空间和外层空间的几何和动力学。
  • 批准号:
    RGPIN-2018-06486
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of Teichmüller space
Teichmüller 空间的几何
  • 批准号:
    435885-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of Teichmüller space
Teichmüller 空间的几何
  • 批准号:
    435885-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of Teichmüller space
Teichmüller 空间的几何
  • 批准号:
    435885-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of Teichmüller space
Teichmüller 空间的几何
  • 批准号:
    435885-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of Teichmüller space
Teichmüller 空间的几何
  • 批准号:
    435885-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Bridging Sea Ice Dynamics from Floe to Basin Scales
职业:弥合从浮冰到盆地尺度的海冰动力学
  • 批准号:
    2338233
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326020
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326021
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
  • 批准号:
    2327466
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
Conference: Supplementary funding for the BIRS-CMO workshop Optimal Transport and Dynamics (24s5198)
会议:BIRS-CMO 研讨会最佳运输和动力学的补充资金 (24s5198)
  • 批准号:
    2401019
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
NSF Postdoctoral Fellowship in Biology: Understanding the role of dietary toxins in shaping microbial community dynamics in the gut
NSF 生物学博士后奖学金:了解膳食毒素在塑造肠道微生物群落动态中的作用
  • 批准号:
    2305735
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Fellowship Award
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了