Classification of road conditions from images with deep learning frameworks********

使用深度学习框架对图像中的路况进行分类********

基本信息

  • 批准号:
    537911-2018
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

This research project with Weatherlogics seeks to automate the process of observing highway conditions by using machine learning to automatically report road conditions using images taken by highway cameras. Specifically, Deep Convolutional Neural Networks (DCNNs) will be employed to classify images taken by highway cameras through the use of transfer learning. Modern DCNN architectures have attained remarkable success in image classification tasks. The deep learning algorithm will be able to take any static image of a highway and determine the road condition that is present (e.g. dry, wet, snow-covered, slush-covered, or ice-covered).****This project would have tremendous positive benefits for Canada. By more accurately observing road conditions, especially in winter, this technology would have both economic and social benefits. Due to the high skill involved in producing and running a machine learning model, the commercialization of this technology would provide high-quality models. Furthermore, the data from this model would be used to improve driver safety and reduce transportation impacts due to weather. Given the movement toward automation in vehicles, and intelligent transportation systems, the ability to receive real-time road condition information across the entire highway network would put Canada on the leading edge of these advances in transportation. Road weather forecasts and observations are a unique service that could be used to position Weatherlogics as a leading data provider to consumers, governments, and transportation/logistics companies that are impacted by adverse road weather****The significance of project is that this technology would give Weatherlogics a unique competitive advantage over traditional weather prediction companies.**
Weatherlogics的这个研究项目旨在通过使用机器学习来自动报告公路状况,从而自动观察公路状况。具体来说,深度卷积神经网络(DCNN)将通过使用迁移学习对高速公路摄像机拍摄的图像进行分类。现代DCNN架构在图像分类任务中取得了显着的成功。深度学习算法将能够拍摄高速公路的任何静态图像,并确定当前的道路状况(例如干燥,潮湿,积雪,泥泞或结冰)。该项目将为加拿大带来巨大的积极利益。 通过更准确地观察道路状况,特别是在冬季,这项技术将具有经济和社会效益。由于生产和运行机器学习模型需要很高的技能,这项技术的商业化将提供高质量的模型。此外,该模型的数据将用于提高驾驶员的安全性,减少天气对交通的影响。考虑到车辆自动化和智能交通系统的发展,在整个高速公路网络中接收实时路况信息的能力将使加拿大处于交通进步的前沿。道路天气预报和观测是一项独特的服务,可用于将Weatherlogics定位为受不利道路天气影响的消费者,政府和运输/物流公司的领先数据提供商 **** 该项目的重要性在于,该技术将使Weatherlogics在传统天气预测公司中具有独特的竞争优势。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ramanna, Sheela其他文献

Cognitive Informatics and Computational Intelligence: Theory and Applications Preface
认知信息学和计算智能:理论与应用序言
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Cui, Zhihua;Ramanna, Sheela;Peters, James F.;Pal, Sankar K.
  • 通讯作者:
    Pal, Sankar K.
1-Dimensional Polynomial Neural Networks for audio signal related problems
  • DOI:
    10.1016/j.knosys.2022.108174
  • 发表时间:
    2022-01-29
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Henry, Christopher J.;Ramanna, Sheela;Abdallah, Habib Ben
  • 通讯作者:
    Abdallah, Habib Ben
Fully automated 2D and 3D convolutional neural networks pipeline for video segmentation and myocardial infarction detection in echocardiography
  • DOI:
    10.1007/s11042-021-11579-4
  • 发表时间:
    2022-07-12
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Hamila, Oumaima;Ramanna, Sheela;Hamid, Tahir
  • 通讯作者:
    Hamid, Tahir
Rough-set based learning: Assessing patterns and predictability of anxiety, depression, and sleep scores associated with the use of cannabinoid-based medicine during COVID-19.
  • DOI:
    10.3389/frai.2023.981953
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Ramanna, Sheela;Ashrafi, Negin;Loster, Evan;Debroni, Karen;Turner, Shelley
  • 通讯作者:
    Turner, Shelley
Using machine learning to improve neutron identification in water Cherenkov detectors.
  • DOI:
    10.3389/fdata.2022.978857
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Jamieson, Blair;Stubbs, Matt;Ramanna, Sheela;Walker, John;Prouse, Nick;Akutsu, Ryosuke;de Perio, Patrick;Fedorko, Wojciech
  • 通讯作者:
    Fedorko, Wojciech

Ramanna, Sheela的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ramanna, Sheela', 18)}}的其他基金

Tolerance-based Granular Computing Methods in Learning: Foundations and Applications
学习中基于容差的粒度计算方法:基础和应用
  • 批准号:
    RGPIN-2019-04104
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Tolerance-based Granular Computing Methods in Learning: Foundations and Applications
学习中基于容差的粒度计算方法:基础和应用
  • 批准号:
    RGPIN-2019-04104
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Examining ensemble machine-learning approaches to improve precipitation forecasting
检查集合机器学习方法以改进降水预报
  • 批准号:
    568786-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Tolerance-based Granular Computing Methods in Learning: Foundations and Applications
学习中基于容差的粒度计算方法:基础和应用
  • 批准号:
    RGPIN-2019-04104
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Tolerance-based Granular Computing Methods in Learning: Foundations and Applications
学习中基于容差的粒度计算方法:基础和应用
  • 批准号:
    RGPIN-2019-04104
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Tolerance Methods in Learning: Foundations and Applications
学习中的宽容方法:基础与应用
  • 批准号:
    DDG-2017-00010
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Development Grant
Tolerance Methods in Learning: Foundations and Applications
学习中的宽容方法:基础与应用
  • 批准号:
    DDG-2017-00010
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Development Grant
Discovery of Patterns in Associated Sets: Foundations and Applications
关联集中模式的发现:基础和应用
  • 批准号:
    194376-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Content aggregation and content user modelling in domain specific social networks
特定领域社交网络中的内容聚合和内容用户建模
  • 批准号:
    492110-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program
Discovery of Patterns in Associated Sets: Foundations and Applications
关联集中模式的发现:基础和应用
  • 批准号:
    194376-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

MANET on road网络智能信息传输模型和方法研究
  • 批准号:
    60502028
  • 批准年份:
    2005
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Clarification of actual driving conditions of brain injury survivors and the relationship between off-road assessment performance and accident and violation history
澄清脑损伤幸存者的实际驾驶状况以及越野评估表现与事故和违规历史之间的关系
  • 批准号:
    23K16647
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A study on methods for evaluating road visibility conditions throughout the day using edge computing
利用边缘计算评估全天道路能见度状况的方法研究
  • 批准号:
    22KJ0072
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Spatial Mapping of Winter Road Weather and Surface Conditions
冬季道路天气和表面状况的空间测绘
  • 批准号:
    558293-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Study on effect of automatic deflector for drag reduction of road vehicles in cross-wind conditions
自动导流板对道路车辆侧风减阻效果研究
  • 批准号:
    21F21347
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Driver behaviour at signalized intersections under extreme road-weather conditions
极端道路天气条件下信号交叉口的驾驶员行为
  • 批准号:
    550800-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    University Undergraduate Student Research Awards
Spatial Mapping of Winter Road Weather and Surface Conditions
冬季道路天气和表面状况的空间测绘
  • 批准号:
    558293-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
A study on sensing of road conditions and driving characteristics for improving comfortability in MaaS
用于提高 MaaS 舒适度的路况和驾驶特性感知研究
  • 批准号:
    20K11793
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An automated system for the analysis of road safety and conditions
用于分析道路安全和状况的自动化系统
  • 批准号:
    LP170101255
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Linkage Projects
Forecast model for road surface conditions along winter roads
冬季道路路面状况预测模型
  • 批准号:
    26350490
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
"The Grey Lane: The Link Between Health Conditions, Driving Attitudes and Driving Outcomes Among Older Adults"
“灰色巷:老年人健康状况、驾驶态度和驾驶结果之间的联系”
  • 批准号:
    311825
  • 财政年份:
    2013
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Studentship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了